969 resultados para Stochastic Model
Resumo:
The problem of estimating the numbers of motor units N in a muscle is embedded in a general stochastic model using the notion of thinning from point process theory. In the paper a new moment type estimator for the numbers of motor units in a muscle is denned, which is derived using random sums with independently thinned terms. Asymptotic normality of the estimator is shown and its practical value is demonstrated with bootstrap and approximative confidence intervals for a data set from a 31-year-old healthy right-handed, female volunteer. Moreover simulation results are presented and Monte-Carlo based quantiles, means, and variances are calculated for N in{300,600,1000}.
Resumo:
The AEGISS (Ascertainment and Enhancement of Gastrointestinal Infection Surveillance and Statistics) project aims to use spatio-temporal statistical methods to identify anomalies in the space-time distribution of non-specific, gastrointestinal infections in the UK, using the Southampton area in southern England as a test-case. In this paper, we use the AEGISS project to illustrate how spatio-temporal point process methodology can be used in the development of a rapid-response, spatial surveillance system. Current surveillance of gastroenteric disease in the UK relies on general practitioners reporting cases of suspected food-poisoning through a statutory notification scheme, voluntary laboratory reports of the isolation of gastrointestinal pathogens and standard reports of general outbreaks of infectious intestinal disease by public health and environmental health authorities. However, most statutory notifications are made only after a laboratory reports the isolation of a gastrointestinal pathogen. As a result, detection is delayed and the ability to react to an emerging outbreak is reduced. For more detailed discussion, see Diggle et al. (2003). A new and potentially valuable source of data on the incidence of non-specific gastro-enteric infections in the UK is NHS Direct, a 24-hour phone-in clinical advice service. NHS Direct data are less likely than reports by general practitioners to suffer from spatially and temporally localized inconsistencies in reporting rates. Also, reporting delays by patients are likely to be reduced, as no appointments are needed. Against this, NHS Direct data sacrifice specificity. Each call to NHS Direct is classified only according to the general pattern of reported symptoms (Cooper et al, 2003). The current paper focuses on the use of spatio-temporal statistical analysis for early detection of unexplained variation in the spatio-temporal incidence of non-specific gastroenteric symptoms, as reported to NHS Direct. Section 2 describes our statistical formulation of this problem, the nature of the available data and our approach to predictive inference. Section 3 describes the stochastic model. Section 4 gives the results of fitting the model to NHS Direct data. Section 5 shows how the model is used for spatio-temporal prediction. The paper concludes with a short discussion.
Resumo:
Asthma is an increasing health problem worldwide, but the long-term temporal pattern of clinical symptoms is not understood and predicting asthma episodes is not generally possible. We analyse the time series of peak expiratory flows, a standard measurement of airway function that has been assessed twice daily in a large asthmatic population during a long-term crossover clinical trial. Here we introduce an approach to predict the risk of worsening airflow obstruction by calculating the conditional probability that, given the current airway condition, a severe obstruction will occur within 30 days. We find that, compared with a placebo, a regular long-acting bronchodilator (salmeterol) that is widely used to improve asthma control decreases the risk of airway obstruction. Unexpectedly, however, a regular short-acting beta2-agonist bronchodilator (albuterol) increases this risk. Furthermore, we find that the time series of peak expiratory flows show long-range correlations that change significantly with disease severity, approaching a random process with increased variability in the most severe cases. Using a nonlinear stochastic model, we show that both the increased variability and the loss of correlations augment the risk of unstable airway function. The characterization of fluctuations in airway function provides a quantitative basis for objective risk prediction of asthma episodes and for evaluating the effectiveness of therapy.
Resumo:
In all European Union countries, chemical residues are required to be routinely monitored in meat. Good farming and veterinary practice can prevent the contamination of meat with pharmaceutical substances, resulting in a low detection of drug residues through random sampling. An alternative approach is to target-monitor farms suspected of treating their animals with antimicrobials. The objective of this project was to assess, using a stochastic model, the efficiency of these two sampling strategies. The model integrated data on Swiss livestock as well as expert opinion and results from studies conducted in Switzerland. Risk-based sampling showed an increase in detection efficiency of up to 100% depending on the prevalence of contaminated herds. Sensitivity analysis of this model showed the importance of the accuracy of prior assumptions for conducting risk-based sampling. The resources gained by changing from random to risk-based sampling should be transferred to improving the quality of prior information.
Resumo:
Switzerland is currently porcine reproductive and respiratory syndrome virus (PRRSV) free, but semen imports from PRRSV-infected European countries are increasing. As the virus can be transmitted via semen, for example, when a free boar stud becomes infected, and the risk of its import in terms of PRRSV introduction is unknown, the annual probability to accidentally import the virus into Switzerland was estimated in a risk assessment. A quantitative stochastic model was set up with data comprised by import figures of 2010, interviews with boar stud owners and expert opinion. It resulted in an annual median number of 0.18 imported ejaculates (= imported semen doses from one collection from one donor) from PRRSV-infected boars. Hence, one infected ejaculate would be imported every 6 years and infect a mean of 10 sows. These results suggest that under current circumstances, there is a substantial risk of PRRSV introduction into Switzerland via imported boar semen and that measures to enhance safety of imports should be taken. The time from infection of a previously negative boar stud to its detection had the highest impact on the number of imported 'positive' ejaculates. Therefore, emphasis should be placed on PRRSV monitoring protocols in boar studs. Results indicated that a substantial increase in safety could only be achieved with much tighter sampling protocols than currently performed. Generally, the model could easily be customized for other applications like other countries or regions or even sow farms that want to estimate their risk when purchasing semen from a particular boar stud.
Resumo:
In recent years, there has been a renewed interest in the ecological consequences of individual trait variation within populations. Given that individual variability arises from evolutionary dynamics, to fully understand eco-evolutionary feedback loops, we need to pay special attention to how standing trait variability affects ecological dynamics. There is mounting empirical evidence that intra-specific phenotypic variation can exceed species-level means, but theoretical models of multi-trophic species coexistence typically neglect individual-level trait variability. What is needed are multispecies datasets that are resolved at the individual level that can be used to discriminate among alternative models of resource selection and species coexistence in food webs. Here, using one the largest individual-based datasets of a food web compiled to date, along with an individual trait-based stochastic model that incorporates Approximate Bayesian computation methods, we document intra-population variation in the strength of prey selection by different classes or predator phenotypes which could potentially alter the diversity and coexistence patterns of food webs. In particular, we found that strongly connected individual predators preferentially consumed common prey, whereas weakly connected predators preferentially selected rare prey. Such patterns suggest that food web diversity may be governed by the distribution of predator connectivity and individual trait variation in prey selection. We discuss the consequences of intra-specific variation in prey selection to assess fitness differences among predator classes (or phenotypes) and track longer term food web patterns of coexistence accounting for several phenotypes within each prey and predator species.
Resumo:
Subgrid processes occur in various ecosystems and landscapes but, because of their small scale, they are not represented or poorly parameterized in climate models. These local heterogeneities are often important or even fundamental for energy and carbon balances. This is especially true for northern peatlands and in particular for the polygonal tundra, where methane emissions are strongly influenced by spatial soil heterogeneities. We present a stochastic model for the surface topography of polygonal tundra using Poisson-Voronoi diagrams and we compare the results with available recent field studies. We analyze seasonal dynamics of water table variations and the landscape response under different scenarios of precipitation income. We upscale methane fluxes by using a simple idealized model for methane emission. Hydraulic interconnectivities and large-scale drainage may also be investigated through percolation properties and thresholds in the Voronoi graph. The model captures the main statistical characteristics of the landscape topography, such as polygon area and surface properties as well as the water balance. This approach enables us to statistically relate large-scale properties of the system to the main small-scale processes within the single polygons.
Resumo:
La vulnerabilidad de los sistemas ganaderos de pastoreo pone en evidencia la necesidad de herramientas para evaluar y mitigar los efectos de la sequía. El avance en la teledetección ha despertado el interés por explotar potenciales aplicaciones, y está dando lugar a un intenso desarrollo de innovaciones en distintos campos. Una de estas áreas es la gestión del riesgo climático, en donde la utilización de índices de vegetación permite la evaluación de la sequía. En esta investigación, se analiza el impacto de la sequía y se evalúa el potencial de nuevas tecnologías como la teledetección para la gestión del riesgo de sequía en sistemas de ganadería extensiva. Para ello, se desarrollan tres aplicaciones: (i) evaluar el impacto económico de la sequía en una explotación ganadera extensiva de la dehesa de Andalucía, (ii) elaborar mapas de vulnerabilidad a la sequía en pastos de Chile y (iii) diseñar y evaluar el potencial de un seguro indexado para sequía en pastos en la región de Coquimbo en Chile. En la primera aplicación, se diseña un modelo dinámico y estocástico que integra aspectos climáticos, ecológicos, agronómicos y socioeconómicos para evaluar el riesgo de sequía. El modelo simula una explotación ganadera tipo de la dehesa de Andalucía para el período 1999-2010. El método de Análisis Histórico y la simulación de MonteCarlo se utilizan para identificar los principales factores de riesgo de la explotación, entre los que destacan, los periodos de inicios del verano e inicios de invierno. Los resultados muestran la existencia de un desfase temporal entre el riesgo climático y riesgo económico, teniendo este último un periodo de duración más extenso en el tiempo. También, revelan que la intensidad, frecuencia y duración son tres atributos cruciales que determinan el impacto económico de la sequía. La estrategia de reducción de la carga ganadera permite aminorar el riesgo, pero conlleva una disminución en el margen bruto de la explotación. La segunda aplicación está dedicada a la elaboración de mapas de vulnerabilidad a la sequia en pastos de Chile. Para ello, se propone y desarrolla un índice de riesgo económico (IRESP) sencillo de interpretar y replicable, que integra factores de riesgo y estrategias de adaptación para obtener una medida del Valor en Riesgo, es decir, la máxima pérdida esperada en un año con un nivel de significación del 5%.La representación espacial del IRESP pone en evidencia patrones espaciales y diferencias significativas en la vulnerabilidad a la sequía a lo largo de Chile. Además, refleja que la vulnerabilidad no siempre esta correlacionada con el riesgo climático y demuestra la importancia de considerar las estrategias de adaptación. Las medidas de autocorrelación espacial revelan que el riesgo sistémico es considerablemente mayor en el sur que en el resto de zonas. Los resultados demuestran que el IRESP transmite información pertinente y, que los mapas de vulnerabilidad pueden ser una herramienta útil en el diseño de políticas y toma de decisiones para la gestión del riesgo de sequía. La tercera aplicación evalúa el potencial de un seguro indexado para sequía en pastos en la región de Coquimbo en Chile. Para lo cual, se desarrolla un modelo estocástico para estimar la prima actuarialmente justa del seguro y se proponen y evalúan pautas alternativas para mejorar el diseño del contrato. Se aborda el riesgo base, el principal problema de los seguros indexados identificado en la literatura y, que está referido a la correlación imperfecta del índice con las pérdidas de la explotación. Para ello, se sigue un enfoque bayesiano que permite evaluar el impacto en el riesgo base de las pautas de diseño propuestas: i) una zonificación por clúster que considera aspectos espacio-temporales, ii) un período de garantía acotado a los ciclos fenológicos del pasto y iii) umbral de garantía. Los resultados muestran que tanto la zonificación como el periodo de garantía reducen el riesgo base considerablemente. Sin embargo, el umbral de garantía tiene un efecto ambiguo sobre el riesgo base. Por otra parte, la zonificación por clúster contribuye a aminorar el riesgo sistémico que enfrentan las aseguradoras. Estos resultados han puesto de manifiesto que un buen diseño de contrato puede tener un doble dividendo, por un lado aumentar su utilidad y, por otro, reducir el coste del seguro. Un diseño de contrato eficiente junto con los avances en la teledetección y un adecuado marco institucional son los pilares básicos para el buen funcionamiento de un programa de seguro. Las nuevas tecnologías ofrecen un importante potencial para la innovación en la gestión del riesgo climático. Los avances en este campo pueden proporcionar importantes beneficios sociales en los países en desarrollo y regiones vulnerables, donde las herramientas para gestionar eficazmente los riesgos sistémicos como la sequía pueden ser de gran ayuda para el desarrollo. The vulnerability of grazing livestock systems highlights the need for tools to assess and mitigate the adverse impact of drought. The recent and rapid progress in remote sensing has awakened an interest for tapping into potential applications, triggering intensive efforts to develop innovations in a number of spheres. One of these areas is climate risk management, where the use of vegetation indices facilitates assessment of drought. This research analyzes drought impacts and evaluates the potential of new technologies such as remote sensing to manage drought risk in extensive livestock systems. Three essays in drought risk management are developed to: (i) assess the economic impact of drought on a livestock farm in the Andalusian Dehesa, (ii) build drought vulnerability maps in Chilean grazing lands, and (iii) design and evaluate the potential of an index insurance policy to address the risk of drought in grazing lands in Coquimbo, Chile. In the first essay, a dynamic and stochastic farm model is designed combining climate, agronomic, socio-economic and ecological aspects to assess drought risk. The model is developed to simulate a representative livestock farm in the Dehesa of Andalusia for the time period 1999-2010. Burn analysis and MonteCarlo simulation methods are used to identify the significance of various risk sources at the farm. Most notably, early summer and early winter are identified as periods of peak risk. Moreover, there is a significant time lag between climate and economic risk and this later last longer than the former. It is shown that intensity, frequency and duration of the drought are three crucial attributes that shape the economic impact of drought. Sensitivity analysis is conducted to assess the sustainability of farm management strategies and demonstrates that lowering the stocking rate reduces farmer exposure to drought risk but entails a reduction in the expected gross margin. The second essay, mapping drought vulnerability in Chilean grazing lands, proposes and builds an index of economic risk (IRESP) that is replicable and simple to interpret. This methodology integrates risk factors and adaptation strategies to deliver information on Value at Risk, maximum expected losses at 5% significance level. Mapping IRESP provides evidence about spatial patterns and significant differences in drought vulnerability across Chilean grazing lands. Spatial autocorrelation measures reveal that systemic risk is considerably larger in the South as compared to Northern or Central Regions. Furthermore, it is shown that vulnerability is not necessarily correlated with climate risk and that adaptation strategies do matter. These results show that IRESP conveys relevant information and that vulnerability maps may be useful tools to assess policy design and decision-making in drought risk management. The third essay develops a stochastic model to estimate the actuarially fair premium and evaluates the potential of an indexed insurance policy to manage drought risk in Coquimbo, a relevant livestock farming region of Chile. Basis risk refers to the imperfect correlation of the index and farmer loses and is identified in the literature as a main limitation of index insurance. A Bayesian approach is proposed to assess the impact on basis risk of alternative guidelines in contract design: i) A cluster zoning that considers space-time aspects, ii) A guarantee period bounded to fit phenological cycles, and iii) the triggering index threshold. Results show that both the proposed zoning and guarantee period considerably reduces basis risk. However, the triggering index threshold has an ambiguous effect on basis risk. On the other hand, cluster zoning contributes to ameliorate systemic risk faced by the insurer. These results highlighted that adequate contract design is important and may result in double dividend. On the one hand, increasing farmers’ utility and, secondly, reducing the cost of insurance. An efficient contract design coupled with advances in remote sensing and an appropriate institutional framework are the basis for an efficient operation of an insurance program. The new technologies offer significant potential for innovation in climate risk managements. Progress in this field is capturing increasing attention and may provide important social gains in developing countries and vulnerable regions where the tools to efficiently manage systemic risks, such as drought, may be a means to foster development.
Resumo:
This paper studies the effect of different penetration rates of plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EV) in the Spanish electrical system. A stochastic model for the average trip evaluation and for the arriving and departure times is used to determine the availability of the vehicles for charging. A novel advanced charging algorithm is proposed, which avoids any communication among all agents. Its performance is determined through different charging scenarios.
Resumo:
La demanda de contenidos de vídeo ha aumentado rápidamente en los últimos años como resultado del gran despliegue de la TV sobre IP (IPTV) y la variedad de servicios ofrecidos por los operadores de red. Uno de los servicios que se ha vuelto especialmente atractivo para los clientes es el vídeo bajo demanda (VoD) en tiempo real, ya que ofrece una transmisión (streaming) inmediata de gran variedad de contenidos de vídeo. El precio que los operadores tienen que pagar por este servicio es el aumento del tráfico en las redes, que están cada vez más congestionadas debido a la mayor demanda de contenidos de VoD y al aumento de la calidad de los propios contenidos de vídeo. Así, uno de los principales objetivos de esta tesis es encontrar soluciones que reduzcan el tráfico en el núcleo de la red, manteniendo la calidad del servicio en el nivel adecuado y reduciendo el coste del tráfico. La tesis propone un sistema jerárquico de servidores de streaming en el que se ejecuta un algoritmo para la ubicación óptima de los contenidos de acuerdo con el comportamiento de los usuarios y el estado de la red. Debido a que cualquier algoritmo óptimo de distribución de contenidos alcanza un límite en el que no se puede llegar a nuevas mejoras, la inclusión de los propios clientes del servicio (los peers) en el proceso de streaming puede reducir aún más el tráfico de red. Este proceso se logra aprovechando el control que el operador tiene en las redes de gestión privada sobre los equipos receptores (Set-Top Box) ubicados en las instalaciones de los clientes. El operador se reserva cierta capacidad de almacenamiento y streaming de los peers para almacenar los contenidos de vídeo y para transmitirlos a otros clientes con el fin de aliviar a los servidores de streaming. Debido a la incapacidad de los peers para sustituir completamente a los servidores de streaming, la tesis propone un sistema de streaming asistido por peers. Algunas de las cuestiones importantes que se abordan en la tesis son saber cómo los parámetros del sistema y las distintas distribuciones de los contenidos de vídeo en los peers afectan al rendimiento general del sistema. Para dar respuesta a estas preguntas, la tesis propone un modelo estocástico preciso y flexible que tiene en cuenta parámetros como las capacidades de enlace de subida y de almacenamiento de los peers, el número de peers, el tamaño de la biblioteca de contenidos de vídeo, el tamaño de los contenidos y el esquema de distribución de contenidos para estimar los beneficios del streaming asistido por los peers. El trabajo también propone una versión extendida del modelo matemático mediante la inclusión de la probabilidad de fallo de los peers y su tiempo de recuperación en el conjunto de parámetros del modelo. Estos modelos se utilizan como una herramienta para la realización de exhaustivos análisis del sistema de streaming de VoD asistido por los peers para la amplia gama de parámetros definidos en los modelos. Abstract The demand of video contents has rapidly increased in the past years as a result of the wide deployment of IPTV and the variety of services offered by the network operators. One of the services that has especially become attractive to the customers is real-time Video on Demand (VoD) because it offers an immediate streaming of a large variety of video contents. The price that the operators have to pay for this convenience is the increased traffic in the networks, which are becoming more congested due to the higher demand for VoD contents and the increased quality of the videos. Therefore, one of the main objectives of this thesis is finding solutions that would reduce the traffic in the core of the network, keeping the quality of service on satisfactory level and reducing the traffic cost. The thesis proposes a system of hierarchical structure of streaming servers that runs an algorithm for optimal placement of the contents according to the users’ behavior and the state of the network. Since any algorithm for optimal content distribution reaches a limit upon which no further improvements can be made, including service customers themselves (the peers) in the streaming process can further reduce the network traffic. This process is achieved by taking advantage of the control that the operator has in the privately managed networks over the Set-Top Boxes placed at the clients’ premises. The operator reserves certain storage and streaming capacity on the peers to store the video contents and to stream them to the other clients in order to alleviate the streaming servers. Because of the inability of the peers to completely substitute the streaming servers, the thesis proposes a system for peer-assisted streaming. Some of the important questions addressed in the thesis are how the system parameters and the various distributions of the video contents on the peers would impact the overall system performance. In order to give answers to these questions, the thesis proposes a precise and flexible stochastic model that takes into consideration parameters like uplink and storage capacity of the peers, number of peers, size of the video content library, size of contents and content distribution scheme to estimate the benefits of the peer-assisted streaming. The work also proposes an extended version of the mathematical model by including the failure probability of the peers and their recovery time in the set of parameters. These models are used as tools for conducting thorough analyses of the peer-assisted system for VoD streaming for the wide range of defined parameters.
Resumo:
Penguin colonies represent some of the most concentrated sources of ammonia emissions to the atmosphere in the world. The ammonia emitted into the atmosphere can have a large influence on the nitrogen cycling of ecosystems near the colonies. However, despite the ecological importance of the emissions, no measurements of ammonia emissions from penguin colonies have been made. The objective of this work was to determine the ammonia emission rate of a penguin colony using inverse-dispersion modelling and gradient methods. We measured meteorological variables and mean atmospheric concentrations of ammonia at seven locations near a colony of Adélie penguins in Antarctica to provide input data for inverse-dispersion modelling. Three different atmospheric dispersion models (ADMS, LADD and a Lagrangian stochastic model) were used to provide a robust emission estimate. The Lagrangian stochastic model was applied both in ‘forwards’ and ‘backwards’ mode to compare the difference between the two approaches. In addition, the aerodynamic gradient method was applied using vertical profiles of mean ammonia concentrations measured near the centre of the colony. The emission estimates derived from the simulations of the three dispersion models and the aerodynamic gradient method agreed quite well, giving a mean emission of 1.1 g ammonia per breeding pair per day (95% confidence interval: 0.4–2.5 g ammonia per breeding pair per day). This emission rate represents a volatilisation of 1.9% of the estimated nitrogen excretion of the penguins, which agrees well with that estimated from a temperature-dependent bioenergetics model. We found that, in this study, the Lagrangian stochastic model seemed to give more reliable emission estimates in ‘forwards’ mode than in ‘backwards’ mode due to the assumptions made.
Resumo:
A mathematical model for the group combustion of pulverized coal particles was developed in a previous work. It includes the Lagrangian description of the dehumidification, devolatilization and char gasification reactions of the coal particles in the homogenized gaseous environment resulting from the three fuels, CO, H2 and volatiles, supplied by the gasification of the particles and their simultaneous group combustion by the gas phase oxidation reactions, which are considered to be very fast. This model is complemented here with an analysis of the particle dynamics, determined principally by the effects of aerodynamic drag and gravity, and its dispersion based on a stochastic model. It is also extended to include two other simpler models for the gasification of the particles: the first one for particles small enough to extinguish the surrounding diffusion flames, and a second one for particles with small ash content when the porous shell of ashes remaining after gasification of the char, non structurally stable, is disrupted. As an example of the applicability of the models, they are used in the numerical simulation of an experiment of a non-swirling pulverized coal jet with a nearly stagnant air at ambient temperature, with an initial region of interaction with a small annular methane flame. Computational algorithms for solving the different stages undergone by a coal particle during its combustion are proposed. For the partial differential equations modeling the gas phase, a second order finite element method combined with a semi-Lagrangian characteristics method are used. The results obtained with the three versions of the model are compared among them and show how the first of the simpler models fits better the experimental results.
Resumo:
Este trabalho apresenta um sistema neural modular, que processa separadamente informações de contexto espacial e temporal, para a tarefa de reprodução de sequências temporais. Para o desenvolvimento do sistema neural foram considerados redes neurais recorrentes, modelos estocásticos, sistemas neurais modulares e processamento de informações de contexto. Em seguida, foram estudados três modelos com abordagens distintas para aprendizagem de seqüências temporais: uma rede neural parcialmente recorrente, um exemplo de sistema neural modular e um modelo estocástico utilizando a teoria de modelos markovianos escondidos. Com base nos estudos e modelos apresentados, esta pesquisa propõe um sistema formado por dois módulos sucessivos distintos. Uma rede de propagação direta (módulo estimador de contexto espacial) realiza o processamento de contexto espacial identificando a seqüência a ser reproduzida e fornecendo um protótipo do contexto para o segundo módulo. Este é formado por uma rede parcialmente recorrente (módulo de reprodução de sequências temporais) para aprender as informações de contexto temporal e reproduzir em suas saídas a seqüência identificada pelo módulo anterior. Para a finalidade mencionada, este mestrado utiliza a distribuição de Gibbs na saída do módulo para contexto espacial de forma que este forneça probabilidades de contexto espacial, indicando o grau de certeza do módulo e possibilitando a utilização de procedimentos especiais para os casos de dúvida. O sistema neural foi testado em conjuntos contendo trajetórias abertas, fechadas, e com diferentes situações de ambigüidade e complexidade. Duas situações distintas foram avaliadas: (a) capacidade do sistema em reproduzir trajetórias a partir de pontos iniciais treinados; e (b) capacidade de generalização do sistema reproduzindo trajetórias considerando pontos iniciais ou finais em situações não treinadas. A situação (b) é um problema de difícil ) solução em redes neurais devido à falta de contexto temporal, essencial na reprodução de seqüências. Foram realizados experimentos comparando o desempenho do sistema modular proposto com o de uma rede parcialmente recorrente operando sozinha e um sistema modular neural (TOTEM). Os resultados sugerem que o sistema proposto apresentou uma capacidade de generalização significamente melhor, sem que houvesse uma deterioração na capacidade de reproduzir seqüências treinadas. Esses resultados foram obtidos em sistema mais simples que o TOTEM.
Resumo:
O sucesso de estratégias de controle preditivo baseado em modelo (MPC, na sigla em inglês) tanto em ambiente industrial quanto acadêmico tem sido marcante. No entanto, ainda há diversas questões em aberto na área, especialmente quando a hipótese simplificadora de modelo perfeito é abandonada. A consideração explícita de incertezas levou a importantes progressos na área de controle robusto, mas esta ainda apresenta alguns problemas: a alta demanda computacional e o excesso de conservadorismo são questões que podem ter prejudicado a aplicação de estratégias de controle robusto na prática. A abordagem de controle preditivo estocástico (SMPC, na sigla em inglês) busca a redução do conservadorismo através da incorporação de informação estatística dos ruídos. Como processos na indústria química sempre estão sujeito a distúrbios, seja devido a diferenças entre planta e modelo ou a distúrbios não medidos, está técnica surge como uma interessante alternativa para o futuro. O principal objetivo desta tese é o desenvolvimento de algoritmos de SMPC que levem em conta algumas das especificidades de tais processos, as quais não foram adequadamente tratadas na literatura até o presente. A contribuição mais importante é a inclusão de ação integral no controlador através de uma descrição do modelo em termos de velocidade. Além disso, restrições obrigatórias (hard) nas entradas associadas a limites físicos ou de segurança e restrições probabilísticas nos estados normalmente advindas de especificações de produtos também são consideradas na formulação. Duas abordagens foram seguidas neste trabalho, a primeira é mais direta enquanto a segunda fornece garantias de estabilidade em malha fechada, contudo aumenta o conservadorismo. Outro ponto interessante desenvolvido nesta tese é o controle por zonas de sistemas sujeitos a distúrbios. Essa forma de controle é comum na indústria devido à falta de graus de liberdade, sendo a abordagem proposta a primeira contribuição da literatura a unir controle por zonas e SMPC. Diversas simulações de todos os controladores propostos e comparações com modelos da literatura são exibidas para demonstrar o potencial de aplicação das técnicas desenvolvidas.
Resumo:
Reatores tubulares de polimerização podem apresentar um perfil de velocidade bastante distorcido. Partindo desta observação, um modelo estocástico baseado no modelo de dispersão axial foi proposto para a representação matemática da fluidodinâmica de um reator tubular para produção de poliestireno. A equação diferencial foi obtida inserindo a aleatoriedade no parâmetro de dispersão, resultando na adição de um termo estocástico ao modelo capaz de simular as oscilações observadas experimentalmente. A equação diferencial estocástica foi discretizada e resolvida pelo método Euler-Maruyama de forma satisfatória. Uma função estimadora foi desenvolvida para a obtenção do parâmetro do termo estocástico e o parâmetro do termo determinístico foi calculado pelo método dos mínimos quadrados. Uma análise de convergência foi conduzida para determinar o número de elementos da discretização e o modelo foi validado através da comparação de trajetórias e de intervalos de confiança computacionais com dados experimentais. O resultado obtido foi satisfatório, o que auxilia na compreensão do comportamento fluidodinâmico complexo do reator estudado.