870 resultados para Stem Cell Research
Resumo:
Cell based therapies as they apply to tissue engineering and regenerative medicine, require cells capable of self renewal and differentiation, and a prerequisite is to be able to prepare an effective dose of ex vivo expanded cells for autologous transplants. The in vivo identification of a source of physiologically relevant cell types suitable for cell therapies therefore figures as an integral part of tissue engineering. Stem cells serve as a reserve for biological repair, having the potential to differentiate into a number of specialised cell types within the body; they therefore represent the most useful candidates for cell based therapies. The primary goal of stem cell research is to produce cells that are both patient specific, as well as having properties suitable for the specific conditions for which they are intended to remedy. From a purely scientific perspective, stem cells allow scientists to gain a deeper understanding of developmental biology and regenerative therapies. Stem cells have acquired a number of uses for applications in regenerative medicine, immunotherapy, gene therapy, but it is in the area of tissue engineering that they generate most excitement, primarily as a result of their capacity for self-renewal and pluripotency. A unique feature of stem cells is their ability to maintain an uncommitted quiescent state in vivo and then, once triggered by conditions such as disease, injury or natural wear or tear, serve as a reservoir and natural support system to replenish lost cells. Although these cells retain the plasticity to differentiate into various tissues, being able to control this differentiation process is still one of the biggest challenges facing stem cell research. In an effort to harness the potential of these cells a number of studies have been conducted using both embryonic/foetal and adult stem cells. The use of embryonic stem cells (ESC) have been hampered by strong ethical and political concerns, this despite their perceived versatility due to their pluripotency. Ethical issues aside, other concerns raised with ESCs relates to the possibility of tumorigenesis, immune rejection and complications with immunosuppressive therapies, all of which adds layers of complications to the application ESC in research and which has led to the search for alternative sources for stem cells. The adult tissues in higher organisms harbours cells, termed adult stem cells, and these cells are reminiscent of unprogrammed stem cells. A number of sources of adult stem cells have been described. Bone marrow is by far the most accessible source of two potent populations of adult stem cells, namely haematopoietic stem cells (HSCs) and bone marrow mesenchymal stem cells (BMSCs). Autologously harvested adult stem cells can, in contrast to embryonic stem cells, readily be used in autografts, since immune rejection is not an issue; and their use in scientific research has not attracted the ethical concerns which have been the case with embryonic stem cells. The major limitation to their use, however, is the fact that adult stem cells are exceedingly rare in most tissues. This fact makes identifying and isolating these cells problematic; bone marrow being perhaps the only notable exception. Unlike the case of HSCs, there are as yet no rigorous criteria for characterizing MSCs. Changing acuity about the pluripotency of MSCs in recent studies has expanded their potential application; however, the underlying molecular pathways which impart the features distinctive to MSCs remain elusive. Furthermore, the sparse in vivo distribution of these cells imposes a clear limitation to their study in vitro. Also, when MSCs are cultured in vitro, there is a loss of the in vivo microenvironment, resulting in a progressive decline in proliferation potential and multipotentiality. This is further exacerbated with increased passage numbers in culture, characterized by the onset of senescence related changes. As a consequence, it is necessary to establish protocols for generating large numbers of MSCs but without affecting their differentiation potential. MSCs are capable of differentiating into mesenchymal tissue lineages, including bone, cartilage, fat, tendon, muscle, and marrow stroma. Recent findings indicate that adult bone marrow may also contain cells that can differentiate into the mature, nonhematopoietic cells of a number of tissues, including cells of the liver, kidney, lung, skin, gastrointestinal tract, and myocytes of heart and skeletal muscle. MSCs can readily be expanded in vitro and can be genetically modified by viral vectors and be induced to differentiate into specific cell lineages by changing the microenvironment–properties which makes these cells ideal vehicles for cellular gene therapy. MSCs can also exert profound immunosuppressive effects via modulation of both cellular and innate immune pathways, and this property allows them to overcome the issue of immune rejection. Despite the many attractive features associated with MSCs, there are still many hurdles to overcome before these cells are readily available for use in clinical applications. The main concern relates to in vivo characterization and identification of MSCs. The lack of a universal biomarker, sparse in vivo distribution, and a steady age related decline in their numbers, makes it an obvious need to decipher the reprogramming pathways and critical molecular players which govern the characteristics unique to MSCs. This book presents a comprehensive insight into the biology of adult stem cells and their utility in current regeneration therapies. The adult stem cell populations reviewed in this book include bone marrow derived MSCs, adipose derived stem cells (ASCs), umbilical cord blood stem cells, and placental stem cells. The features such as MSC circulation and trafficking, neuroprotective properties, and the nurturing roles and differentiation potential of multiple lineages have been discussed in details. In terms of therapeutic applications, the strengths of MSCs have been presented and their roles in disease treatments such as osteoarthritis, Huntington’s disease, periodontal regeneration, and pancreatic islet transplantation have been discussed. An analysis comparing osteoblast differentiation of umbilical cord blood stem cells and MSCs has been reviewed, as has a comparison of human placental stem cells and ASCs, in terms of isolation, identification and therapeutic applications of ASC in bone, cartilage regeneration, as well as myocardial regeneration. It is my sincere hope that this book will update the reader as to the research progress of MSC biology and potential use of these cells in clinical applications. It will be the best reward to all contributors of this book, if their efforts herein may in some way help the readers in any part of their study, research, and career development.
Resumo:
Stem cells are unprogrammed cells which possess plasticity and self renewal capability. The term of stem cell was first used to describe cells committed to give rise to germline cells, and to describe proposed progenitor cells of the blood system [1]. A unique feature of stem cell is to remain quiescent in vivo in an uncommitted state. They serve as reservoir or natural support system to replenish cells lost due to disease, injury or aging. When triggered by appropriate signals these cells divide and may become specialized, committed cells; however being able to control this differentiation process still remains one of the biggest challenge in stem cell research [2]. The cell division of stem cells is a distinct aspect of their biology, since this division may be either symmetric or asymmetric. Symmetric division takes place when the stem cells divides and forms two new daughter cells. Asymmetric division is thought to take place only under certain conditions where stem cells divides and gives rise to a daughter cell which remains primitive and does not proliferate, and one committed progenitor cell, which heads down a path of differentiation. Asymmetric division of stem cells helps reparative process, and also ensures that the stem cells pool does not decrease, whereas symmetric division is responsible for stem cells undergoing self renewal and proliferation. The factors which prompt the stem cells to undergo asymmetric division are, however, not well understood, but it is clear that the delicate balance between the self renewal and differentiation is what maintains tissue homeostasis.
Resumo:
Recent evidence suggested that prostate cancer stem/progenitor cells (CSC) are responsible for cancer initiation as well as disease progression. Unfortunately, conventional therapies are only effective in targeting the more differentiated cancer cells and spare the CSCs. Here, we report that PSP, an active component extracted from the mushroom Turkey tail (also known as Coriolus versicolor), is effective in targeting prostate CSCs. We found that treatment of the prostate cancer cell line PC-3 with PSP led to the down-regulation of CSC markers (CD133 and CD44) in a time and dose-dependent manner. Meanwhile, PSP treatment not only suppressed the ability of PC-3 cells to form prostaspheres under non-adherent culture conditions, but also inhibited their tumorigenicity in vivo, further proving that PSP can suppress prostate CSC properties. To investigate if the anti-CSC effect of PSP may lead to prostate cancer chemoprevention, transgenic mice (TgMAP) that spontaneously develop prostate tumors were orally fed with PSP for 20 weeks. Whereas 100% of the mice that fed with water only developed prostate tumors at the end of experiment, no tumors could be found in any of the mice fed with PSP, suggesting that PSP treatment can completely inhibit prostate tumor formation. Our results not only demonstrated the intriguing anti-CSC effect of PSP, but also revealed, for the first time, the surprising chemopreventive property of oral PSP consumption against prostate cancer.
Resumo:
The cancer stem-cell (CSC) hypothesis suggests that there is a small subset of cancer cells that are responsible for tumor initiation and growth, possessing properties such as indefinite self-renewal, slow replication, intrinsic resistance to chemotherapy and radiotherapy, and an ability to give rise to differentiated progeny. Through the use of xenotransplantation assays, putative CSCs have been identified in many cancers, often identified by markers usually expressed in normal stem cells. This is also the case in lung cancer, and the accumulated data on side population cells, CD133, CD166, CD44 and ALDH1 are beginning to clarify the true phenotype of the lung cancer stem cell. Furthermore, it is now clear that many of the pathways of normal stem cells, which guide cellular proliferation, differentiation, and apoptosis are also prominent in CSCs; the Hedgehog (Hh), Notch, and Wnt signaling pathways being notable examples. The CSC hypothesis suggests that there is a small reservoir of cells within the tumor, which are resistant to many standard therapies, and can give rise to new tumors in the form of metastases or relapses after apparent tumor regression. Therapeutic interventions that target CSC pathways are still in their infancy and clinical data of their efficacy remain limited. However Smoothened inhibitors, gamma-secretase inhibitors, anti-DLL4 antagonists, Wnt antagonists, and CBP/β-catenin inhibitors have all shown promising anticancer effects in early studies. The evidence to support the emerging picture of a lung cancer CSC phenotype and the development of novel therapeutic strategies to target CSCs are described in this review.
Resumo:
The cancer stem cell hypothesis states that tumours arise from cells with the ability to self-renew and differentiate into multiple cell types, and that these cells persist in tumors as a distinct population that can cause disease relapse and hence metastasis. The crux of this hypothesis is that these cells are the only cells capable of, by themselves, giving rise to new tumours. What proportion of a tumour consists of these stem cells, where are they localised, how are they regulated, and how can we identify them? The stromal cells embedded within the extracellular matrix (ECM) not only provide a scaffold but also produce ECM constituents for use by stem cells. Heparan sulfate proteoglycans (HSPGs) are ubiquitous to this cell niche and interact with a large number of ligands including growth factors, their receptors, and ECM structural components. It is still unclear whether ECM degradation and subsequent metastasis is a result of proteases produced by the tumour cells themselves or by cells within the stromal compartment. The identification of the cellular origin of cancer stem cells along with microenvironmental changes involved in the initiation, progression and the malignant conversion of all cancers is critical to the development of targeted therapeutics. As ubiquitous members of the ECM microenvironment and hence the cancer cell niche, HSPGs are candidates for a central role in these processes.
Resumo:
Introduction The clinically known importance of patient sex as a major risk factor for compromised bone healing is poorly reflected in animal models. Consequently, the underlying cellular mechanisms remain elusive. Because mesenchymal stem cells (MSCs) are postulated to regulate tissue regeneration and give rise to essential differentiated cell types, they may contribute to sex-specific differences in bone healing outcomes. Methods We investigated sex-specific variations in bone healing and associated differences in MSC populations. A 1.5 mm osteotomy gap in the femora of 8 male and 8 female 12-month-old Sprague-Dawley rats was stabilized by an external fixator. Healing was analyzed in terms of biomechanical testing, bridging and callus size over time (radiography at 2, 4, and 6 weeks after surgery), and callus volume and geometry by μCT at final follow-up. MSCs were obtained from bone marrow samples of an age-matched group of 12 animals (6 per gender) and analyzed for numbers of colony-forming units (CFUs) and their capacity to differentiate and proliferate. The proportion of senescent cells was determined by β-galactosidase staining. Results Sex-specific differences were indicated by a compromised mechanical competence of the callus in females compared with males (maximum torque at failure, p = 0.028). Throughout the follow-up, the cross-sectional area of callus relative to bone was reduced in females (p ≤ 0.01), and the bridging of callus was delayed (p 2weeks = 0.041). μCT revealed a reduced callus size (p = 0.003), mineralization (p = 0.003) and polar moment of inertia (p = 0.003) in female animals. The female bone marrow contained significantly fewer MSCs, represented by low CFU numbers in both femora and tibiae (p femur = 0.017, p tibia = 0.010). Functional characteristics of male and female MSCs were similar. Conclusion Biomechanically compromised and radiographically delayed bone formation were distinctive in female rats. These differences were concomitant with a reduced number of MSCs, which may be causative for the suboptimal bone healing.
Resumo:
Bone, tendon, and cartilage are highly specialized musculoskeletal connective tissues that are subject to injury and degeneration. These tissues have relatively poor healing capabilities, and coupled with their variable response to established medical treatments, produce significant morbidity. Mesenchymal stem cells (MSCs) are capable of regenerating skeletal tissues and therefore offer great promise in the treatment of connective tissue pathologies. Adult MSCs are multipotent cells that possess the properties of proliferation and differentiation into all connective tissues. Furthermore, they can be gene modified to secrete growth factors and utilized in connective tissue engineering. Potential MSC-based therapies for bone and tendon conditions are reviewed in this chapter.
Resumo:
Over 80% of women diagnosed with advanced-stage ovarian cancer die as a result of disease recurrence due to failure of chemotherapy treatment. In this study, using two distinct ovarian cancer cell lines (epithelial OVCA 433 and mesenchymal HEY) we demonstrate enrichment in a population of cells with high expression of CSC markers at the protein and mRNA levels in response to cisplatin, paclitaxel and the combination of both. We also demonstrate a significant enhancement in the sphere forming abilities of ovarian cancer cells in response to chemotherapy drugs. The results of these in vitro findings are supported by in vivo mouse xenograft models in which intraperitoneal transplantation of cisplatin or paclitaxel-treated residual HEY cells generated significantly higher tumor burden compared to control untreated cells. Both the treated and untreated cells infiltrated the organs of the abdominal cavity. In addition, immunohistochemical studies on mouse tumors injected with cisplatin or paclitaxel treated residual cells displayed higher staining for the proliferative antigen Ki67, oncogeneic CA125, epithelial E-cadherin as well as cancer stem cell markers such as Oct4 and CD117, compared to mice injected with control untreated cells. These results suggest that a short-term single treatment of chemotherapy leaves residual cells that are enriched in CSC-like traits, resulting in an increased metastatic potential. The novel findings in this study are important in understanding the early molecular mechanisms by which chemoresistance and subsequent relapse may be triggered after the first line of chemotherapy treatment.
Resumo:
Epithelial mesenchymal transition (EMT) and cancer stem cells (CSC) have been associated with resistance to chemotherapy. Eighty percent of ovarian cancer patients initially respond to platinum-based combination therapy but most return with recurrence and ultimate demise. To better understand such chemoresistance we have assessed the potential role of EMT in tumor cells collected from advanced-stage ovarian cancer patients and the ovarian cancer cell line OVCA 433 in response to cisplatin in vitro. We demonstrate that cisplatin-induced transition from epithelial to mesenchymal morphology in residual cancer cells correlated with reduced E-cadherin, and increased N-cadherin and vimentin expression. The mRNA expression of Snail, Slug, Twist, and MMP-2 were significantly enhanced in response to cisplatin and correlated with increased migration. This coincided with increased cell surface expression of CSC-like markers such as CD44, α2 integrin subunit, CD117, CD133, EpCAM, and the expression of stem cell factors Nanog and Oct-4. EMT and CSC-like changes in response to cisplatin correlated with enhanced activation of extracellular signal-regulated kinase (ERK)1/2. The selective MEK inhibitor U0126 inhibited ERK2 activation and partially suppressed cisplatin-induced EMT and CSC markers. In vivo xenotransplantation of cisplatin-treated OVCA 433 cells in zebrafish embryos demonstrated significantly enhanced migration of cells compared to control untreated cells. U0126 inhibited cisplatin-induced migration of cells in vivo, suggesting that ERK2 signaling is critical to cisplatin-induced EMT and CSC phenotypes, and that targeting ERK2 in the presence of cisplatin may reduce the burden of residual tumor, the ultimate cause of recurrence in ovarian cancer patients.
Resumo:
We review here the recently emerging relationship between epithelial-mesenchymal transition (EMT) and breast cancer stem cells (BCSC), and provide analyses of published data on human breast cancer cell lines, supporting their utility as a model for the EMT/BCSC state. Genome-wide transcriptional profiling of these cell lines has confirmed the existence of a subgroup with mesenchymal tendencies and enhanced invasive properties ('Basal B'/Mesenchymal), distinct from subgroups with either predominantly luminal ('Luminal') or mixed basal/luminal ('Basal A') features (Neve et al. Cancer Cell, 2006). A literature-derived EMT gene signature has shown specific enrichment within the Basal B subgroup of cell lines, consistent with their over-expression of various EMT transcriptional drivers. Basal B cell lines are found to resemble BCSC, being CD44highCD24low. Moreover, gene products that distinguish Basal B from Basal A and Luminal cell lines (Basal B Discriminators) showed close concordance with those that define BCSC isolated from clinical material, as reported by Shipitsin et al. (Cancer Cell, 2007). CD24 mRNA levels varied across Basal B cell lines, correlating with other Basal B Discriminators. Many gene products correlating with CD24 status in Basal B cell lines were also differentially expressed in isolated BCSC. These findings confirm and extend the importance of the cellular product of the EMT with Basal B cell lines, and illustrate the value of analysing these cell lines for new leads that may improve breast cancer outcomes. Gene products specific to Basal B cell lines may serve as tools for the detection, quantification, and analysis of BCSC/EMT attributes.
Resumo:
An essential step for therapeutic and research applications of stem cells is their ability to differentiate into specific cell types. Neuronal cells are of great interest for medical treatment of neurodegenerative diseases and traumatic injuries of central nervous system (CNS), but efforts to produce these cells have been met with only modest success. In an attempt of finding new approaches, atmospheric-pressure room-temperature microplasma jets (MPJs) are shown to effectively direct in vitro differentiation of neural stem cells (NSCs) predominantly into neuronal lineage. Murine neural stem cells (C17.2-NSCs) treated with MPJs exhibit rapid proliferation and differentiation with longer neurites and cell bodies eventually forming neuronal networks. MPJs regulate ~. 75% of NSCs to differentiate into neurons, which is a higher efficiency compared to common protein- and growth factors-based differentiation. NSCs exposure to quantized and transient (~. 150. ns) micro-plasma bullets up-regulates expression of different cell lineage markers as β-Tubulin III (for neurons) and O4 (for oligodendrocytes), while the expression of GFAP (for astrocytes) remains unchanged, as evidenced by quantitative PCR, immunofluorescence microscopy and Western Blot assay. It is shown that the plasma-increased nitric oxide (NO) production is a factor in the fate choice and differentiation of NSCs followed by axonal growth. The differentiated NSC cells matured and produced mostly cholinergic and motor neuronal progeny. It is also demonstrated that exposure of primary rat NSCs to the microplasma leads to quite similar differentiation effects. This suggests that the observed effect may potentially be generic and applicable to other types of neural progenitor cells. The application of this new in vitro strategy to selectively differentiate NSCs into neurons represents a step towards reproducible and efficient production of the desired NSC derivatives. © 2013.
Resumo:
Background Current treatment of ovarian cancer patients with chemotherapy leaves behind a residual tumor which results in recurrent ovarian cancer within a short time frame. We have previously demonstrated that a single short-term treatment of ovarian cancer cells with chemotherapy in vitro resulted in a cancer stem cell (CSC)-like enriched residual population which generated significantly greater tumor burden compared to the tumor burden generated by control untreated cells. In this report we looked at the mechanisms of the enrichment of CSC-like residual cells in response to paclitaxel treatment. Methods The mechanism of survival of paclitaxel-treated residual cells at a growth inhibitory concentration of 50% (GI50) was determined on isolated tumor cells from the ascites of recurrent ovarian cancer patients and HEY ovarian cancer cell line by in vitro assays and in a mouse xenograft model. Results Treatment of isolated tumor cells from the ascites of ovarian cancer patients and HEY ovarian cancer cell line with paclitaxel resulted in a CSC-like residual population which coincided with the activation of Janus activated kinase 2 (JAK2) and signal transducer and activation of transcription 3 (STAT3) pathway in paclitaxel surviving cells. Both paclitaxel-induced JAK2/STAT3 activation and CSC-like characteristics were inhibited by a low dose JAK2-specific small molecule inhibitor CYT387 (1 μM) in vitro. Subsequent, in vivo transplantation of paclitaxel and CYT387-treated HEY cells in mice resulted in a significantly reduced tumor burden compared to that seen with paclitaxel only-treated transplanted cells. In vitro analysis of tumor xenografts at protein and mRNA levels demonstrated a loss of CSC-like markers and CA125 expression in paclitaxel and CYT387-treated cell-derived xenografts, compared to paclitaxel only-treated cell-derived xenografts. These results were consistent with significantly reduced activation of JAK2 and STAT3 in paclitaxel and CYT387-treated cell-derived xenografts compared to paclitaxel only-treated cell derived xenografts. Conclusions This proof of principle study demonstrates that inhibition of the JAK2/STAT3 pathway by the addition of CYT387 suppresses the ‘stemness’ profile in chemotherapy-treated residual cells in vitro, which is replicated in vivo, leading to a reduced tumor burden. These findings have important implications for ovarian cancer patients who are treated with taxane and/or platinum-based therapies. Keywords: Ovarian carcinoma, Cancer stem cell, Metastasis, Ascites, Chemoresistance, Recurrence, JAK2/STAT3 pathway