961 resultados para Statistical Process Control (SPC)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
When joint (X) over bar and R charts are in use, samples of fixed size are regularly taken from the process, and their means and ranges are plotted on the (X) over bar and R charts, respectively. In this article, joint (X) over bar and R charts have been used for monitoring continuous production processes. The sampling is performed, in two stages. During the first stage, one item of the sample is inspected and, depending on the result, the sampling is interrupted if the process is found to be in control; otherwise, it goes on to the second stage, where the remaining sample items are inspected. The two-stage sampling procedure speeds up the detection of process disturbances. The proposed joint (X) over bar and R charts are easier to administer and are more efficient than the joint (X) over bar and R charts with variable sample size where the quality characteristic of interest can be evaluated either by attribute or variable. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
A standard (X) over bar chart for controlling the process mean takes samples of size no at specified, equally-spaced, fixed-time points. This article proposes a modification of the standard (X) over bar chart that allows one to take additional samples, bigger than no, between these fixed times. The additional samples are taken from the process when there is evidence that the process mean moved from target. Following the notation proposed by Reynolds (1996a) and Costs (1997) we shortly call the proposed (X) over bar chart as VSSIFT (X) over bar chart: where VSSIFT means variable sample size and sampling intervals with fixed times. The (X) over bar chart with the VSSIFT feature is easier to be administered than a standard VSSI (X) over bar chart that is not constrained to sample at the specified fixed times. The performances of the charts in detecting process mean shifts are comparable.
Resumo:
Recent theoretical studies have shown that the X̄ chart with variable sampling intervals (VSI) and the X̄ chart with variable sample size (VSS) are quicker than the traditional X̄ chart in detecting shifts in the process. This article considers the X̄ chart with variable sample size and sampling intervals (VSSI). It is assumed that the amount of time the process remains in control has exponential distribution. The properties of the VSSI X̄ chart are obtained using Markov chains. The VSSI X̄ chart is even quicker than the VSI or VSS X̄ charts in detecting moderate shifts in the process.
Resumo:
A standard X̄ chart for controlling the process mean takes samples of size n0 at specified, equally-spaced, fixed-time points. This article proposes a modification of the standard X chart that allows one to take additional samples, bigger than n0, between these fixed times. The additional samples are taken from the process when there is evidence that the process mean moved from target. Following the notation proposed by Reynolds (1996a) and Costa (1997) we shortly call the proposed X chart as VSSIFT X chart where VSSIFT means variable sample size and sampling intervals with fixed times. The X chart with the VSSIFT feature is easier to be administered than a standard VSSI X chart that is not constrained to sample at the specified fixed times. The performances of the charts in detecting process mean shifts are comparable. Copyright © 1998 by Marcel Dekker, Inc.
Resumo:
A Fortran computer program is given for the computation of the adjusted average time to signal, or AATS, for adaptive X̄ charts with one, two, or all three design parameters variable: the sample size, n, the sampling interval, h, and the factor k used in determining the width of the action limits. The program calculates the threshold limit to switch the adaptive design parameters and also provides the in-control average time to signal, or ATS.
Resumo:
Recent studies have shown that the X̄ chart with variable sampling intervals (VSI) and/or with variable sample sizes (VSS) detects process shifts faster than the traditional X̄ chart. This article extends these studies for processes that are monitored by both the X̄ and R charts. A Markov chain model is used to determine the properties of the joint X and R charts with variable sample sizes and sampling intervals (VSSI). The VSSI scheme improves the joint X̄ and R control chart performance in terms of the speed with which shifts in the process mean and/or variance are detected.
Resumo:
Varying the parameters of the X̄ chart has been explored extensively in recent years. In this paper, we extend the study of the X̄ chart with variable parameters to include variable action limits. The action limits establish whether the control should be relaxed or not. When the X̄ falls near the target, the control is relaxed so that there will be more time before the next sample and/or the next sample will be smaller than usual. When the X̄ falls far from the target but not in the action region, the control is tightened so that there is less time before the next sample and/or the next sample will be larger than usual. The goal is to draw the action limits wider than usual when the control is relaxed and narrower than usual when the control is tightened. This new feature then makes the X̄ chart more powerful than the CUSUM scheme in detecting shifts in the process mean.
Resumo:
We develop an economic model for X̄ control charts having all design parameters varying in an adaptive way, that is, in real time considering current sample information. In the proposed model, each of the design parameters can assume two values as a function of the most recent process information. The cost function is derived and it provides a device for optimal selection of the design parameters. Through a numerical example one can foresee the savings that the developed model possibly provides. © 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Throughout this article, it is assumed that the no-central chi-square chart with two stage samplings (TSS Chisquare chart) is employed to monitor a process where the observations from the quality characteristic of interest X are independent and identically normally distributed with mean μ and variance σ2. The process is considered to start with the mean and the variance on target (μ = μ0; σ2 = σ0 2), but at some random time in the future an assignable cause shifts the mean from μ0 to μ1 = μ0 ± δσ0, δ >0 and/or increases the variance from σ0 2 to σ1 2 = γ2σ0 2, γ > 1. Before the assignable cause occurrence, the process is considered to be in a state of statistical control (defined by the in-control state). Similar to the Shewhart charts, samples of size n 0+ 1 are taken from the process at regular time intervals. The samplings are performed in two stages. At the first stage, the first item of the i-th sample is inspected. If its X value, say Xil, is close to the target value (|Xil-μ0|< w0σ 0, w0>0), then the sampling is interrupted. Otherwise, at the second stage, the remaining n0 items are inspected and the following statistic is computed. Wt = Σj=2n 0+1(Xij - μ0 + ξiσ 0)2 i = 1,2 Let d be a positive constant then ξ, =d if Xil > 0 ; otherwise ξi =-d. A signal is given at sample i if |Xil-μ0| > w0σ 0 and W1 > knia:tl, where kChi is the factor used in determining the upper control limit for the non-central chi-square chart. If devices such as go and no-go gauges can be considered, then measurements are not required except when the sampling goes to the second stage. Let P be the probability of deciding that the process is in control and P 1, i=1,2, be the probability of deciding that the process is in control at stage / of the sampling procedure. Thus P = P1 + P 2 - P1P2, P1 = Pr[μ0 - w0σ0 ≤ X ≤ μ0+ w 0σ0] P2=Pr[W ≤ kChi σ0 2], (3) During the in-control period, W / σ0 2 is distributed as a non-central chi-square distribution with n0 degrees of freedom and a non-centrality parameter λ0 = n0d2, i.e. W / σ0 2 - xn0 22 (λ0) During the out-of-control period, W / σ1 2 is distributed as a non-central chi-square distribution with n0 degrees of freedom and a non-centrality parameter λ1 = n0(δ + ξ)2 / γ2 The effectiveness of a control chart in detecting a process change can be measured by the average run length (ARL), which is the speed with which a control chart detects process shifts. The ARL for the proposed chart is easily determined because in this case, the number of samples before a signal is a geometrically distributed random variable with parameter 1-P, that is, ARL = I /(1-P). It is shown that the performance of the proposed chart is better than the joint X̄ and R charts, Furthermore, if the TSS Chi-square chart is used for monitoring diameters, volumes, weights, etc., then appropriate devices, such as go-no-go gauges can be used to decide if the sampling should go to the second stage or not. When the process is stable, and the joint X̄ and R charts are in use, the monitoring becomes monotonous because rarely an X̄ or R value fall outside the control limits. The natural consequence is the user to pay less and less attention to the steps required to obtain the X̄ and R value. In some cases, this lack of attention can result in serious mistakes. The TSS Chi-square chart has the advantage that most of the samplings are interrupted, consequently, most of the time the user will be working with attributes. Our experience shows that the inspection of one item by attribute is much less monotonous than measuring four or five items at each sampling.
Resumo:
Purpose - The purpose of this paper is to present designs for an accelerated life test (ALT). Design/methodology/approach - Bayesian methods and simulation Monte Carlo Markov Chain (MCMC) methods were used. Findings - In the paper a Bayesian method based on MCMC for ALT under EW distribution (for life time) and Arrhenius models (relating the stress variable and parameters) was proposed. The paper can conclude that it is a reasonable alternative to the classical statistical methods since the implementation of the proposed method is simple, not requiring advanced computational understanding and inferences on the parameters can be made easily. By the predictive density of a future observation, a procedure was developed to plan ALT and also to verify if the conformance fraction of the manufactured process reaches some desired level of quality. This procedure is useful for statistical process control in many industrial applications. Research limitations/implications - The results may be applied in a semiconductor manufacturer. Originality/value - The Exponentiated-Weibull-Arrhenius model has never before been used to plan an ALT. © Emerald Group Publishing Limited.
Resumo:
The sugarcane mechanized planting is becoming increasingly widespread in Brazil due to a higher operability and better working conditions offered to workers compared to other types of planting. Studies related to this topic are insufficient or scarce in Brazil. In this context, the aim of this study was to evaluate the operation quality of sugarcane mechanized planting in two operation shifts, by means of statistical process control. The mechanized planting was held on March 2012 and statistical design was completely randomized with two treatments, totaling 40 replications for the day shift and 40 replications for the night shift. The variables evaluated were: speed, engine rotation, engine oil pressure, water temperature of the engine, effective field capacity and the time consumption hourly and effective fuel. The use of statistical control charts showed that random intrinsic do not cause this process. The tractor alignment error showed outliers in the day and night shifts operations, indicating a possible delay in receiving the signal. The water temperature of the engine and the effective fuel consumption showed lower variability in nighttime operation with average values of 81°C and 22.66 L ha-1, respectively. The hourly fuel consumption had greater variability and consequently lower quality during the night of the operation, with an average consumption of 25.46 L h-1 while the day shift showed 26.86 L h-1.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)