998 resultados para Statistical Convergence
Resumo:
Several studies have shown that patients with congestive heart failure (CHF) have a compromised health-related quality of life (HRQL), and this, in recent years, has become a primary endpoint when considering the impact of treatment of chronic conditions such as CHF. OBJECTIVES: To evaluate the psychometric properties of the Portuguese version of a new specific instrument to measure HRQL in patients hospitalized for CHF: the Kansas City Cardiomyopathy Questionnaire (KCCQ). METHODS: The KCCQ was applied to a sample of 193 consecutive patients hospitalized for CHF. Of these, 105 repeated the assessment 3 months after admission, with no events during this period. Mean age was 64.4 +/- 12.4 years (21-88), and 72.5% were 72.5% male. CHF was of ischemic etiology in 4% of cases. RESULTS: This version of the KCCQ was subjected to statistical validation, with assessment of reliability and validity, similar to the American version. Reliability was assessed by the internal consistency of the domains and summary scores, which showed similar values of Cronbach alpha (0.50-0.94). Validity was assessed by convergence, sensitivity to differences between groups and sensitivity to changes in clinical condition. We evaluated the convergent validity of all domains related to functionality, through the relationship between them and a measure of functionality, the New York Heart Association (NYHA) classification. Significant correlations were found (p < 0.01) for this measure of functionality i patients with CHF. Analysis of variance between the physical limitation domain, the summary scores and NYHA class was performed and statistically significant differences were found (F = 23.4; F = 36.4; F = 37.4, p = 0.0001) in the ability to discriminate severity of clinical condition. A second evaluation was performed on 105 patients at the 3-month follow-up outpatient appointment, and significant changes were observed in the mean scores of the domains assessed between hospital admission and the clinic appointment (differences from 14.9 to 30.6 on a scale of 0-100), indicating that the domains assessed are sensitive to changes in clinical condition. The correlation between dimensions of quality of life in the KCCQ is moderate, suggesting that the dimensions are independent, supporting the multifactorial nature of HRQL and the suitability of this measure for its evaluation. CONCLUSION: The KCCQ is a valid instrument, sensitive to change and a specific measure of HRQL in a population with dilated cardiomyopathy and CHF.
Resumo:
Presented at 23rd International Conference on Real-Time Networks and Systems (RTNS 2015). 4 to 6, Nov, 2015, Main Track. Lille, France.
Resumo:
Antibody in human sera that induces lysis of sheep erythrocytes in hemolytic assay was investigated. The present study showed that the presence in serum of the thermostable cytolytic anti-sheep red blood cells antibodies is dependent on the Schistosoma mansoni infection, and this is more frequent in adults than in children. The thermostable characteristic of hemolysins in normal sera was not dependent on the presence of Ascaris lumbricoides, Trichuris trichiura or hookworm geo-helminths. Further, thermostable complement-activating heterophile antibodies were noticed in children in association with massive number of S. mansoni eggs. The results were obtained by using the z- and the chi-square tests. The z-test allows us to formulate a one-sided alternative, i.e., a tendency of one of the attributes. On the other hand, the chi-square test analyzes the independence between attributes by using a contingency table. Besides the obtained results being interesting in the field of schistosomiasis mansoni, they can provide a new insight into the use of statistics in medical science.
Resumo:
Dissertação de Mestrado apresentada ao Instituto de Contabilidade e Administração do Porto para a obtenção do grau de Mestre em Contabilidade e Finanças, sob orientação da Professora Doutora Cláudia Maria Ferreira Pereira
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics
Resumo:
The intrinsic forces of market aiming for telecom industry convergence has arrived to Brazil. This case presents real characters, a sequence of events and other public information that has been impacting two corporations studied in this case. TIM Brazil and Oi S.A, two top players in the Brazilian telecom industry mobile and fixed segment respectively. While a merge between the two of them looks perfect and simple in an operational perspective due to its vertical complementarity, bring to them opportunities to win over a bundle offer (multi service package) that will consolidate their market predominance. Macroeconomic and internal corporate contrasts between these companies’ environment might signal that an impulsive could have a high price to pay in the future.
Resumo:
The real convergence hypothesis has spurred a myriad of empirical tests and approaches in the economic literature. This Work Project intends to test for real output and growth convergence in all N(N-1)/2 possible pairs of output and output growth gaps of 14 Eurozone countries. This paper follows a time-series approach, as it tests for the presence of unit roots and persistence changes in the above mentioned pairs of output gaps, as well as for the existence of growth convergence with autoregressive models. Overall, significantly greater evidence has been found to support growth convergence rather than output convergence in our sample.
Resumo:
A novel framework for probabilistic-based structural assessment of existing structures, which combines model identification and reliability assessment procedures, considering in an objective way different sources of uncertainty, is presented in this paper. A short description of structural assessment applications, provided in literature, is initially given. Then, the developed model identification procedure, supported in a robust optimization algorithm, is presented. Special attention is given to both experimental and numerical errors, to be considered in this algorithm convergence criterion. An updated numerical model is obtained from this process. The reliability assessment procedure, which considers a probabilistic model for the structure in analysis, is then introduced, incorporating the results of the model identification procedure. The developed model is then updated, as new data is acquired, through a Bayesian inference algorithm, explicitly addressing statistical uncertainty. Finally, the developed framework is validated with a set of reinforced concrete beams, which were loaded up to failure in laboratory.
Resumo:
Dissertação de mestrado em Estatística
Resumo:
Nuevas biotecnologías, como los marcadores de la molécula de ADN, permiten caracterizar el genoma vegetal. El uso de la información genómica producida para cientos o miles de posiciones cromosómicas permite identificar genotipos superiores en menos tiempo que el requerido por la selección fenotípica tradicional. La mayoría de los caracteres de las especies vegetales cultivadas de importancia agronómica y económica, son controlados por poli-genes causantes de un fenotipo con variación continua, altamente afectados por el ambiente. Su herencia es compleja ya que resulta de la interacción entre genes, del mismo o distinto cromosoma, y de la interacción del genotipo con el ambiente, dificultando la selección. Estas biotecnologías producen bases de datos con gran cantidad de información y estructuras complejas de correlación que requieren de métodos y modelos biométricos específicos para su procesamiento. Los modelos estadísticos focalizados en explicar el fenotipo a partir de información genómica masiva requieren la estimación de un gran número de parámetros. No existen métodos, dentro de la estadística paramétrica capaces de abordar este problema eficientemente. Además los modelos deben contemplar no-aditividades (interacciones) entre efectos génicos y de éstos con el ambiente que son también dificiles de manejar desde la concepción paramétrica. Se hipotetiza que el análisis de la asociación entre caracteres fenotípicos y genotipos moleculares, caracterizados por abundante información genómica, podría realizarse eficientemente en el contexto de los modelos mixtos semiparamétricos y/o de métodos no-paramétricos basados en técnicas de aprendizaje automático. El objetivo de este proyecto es desarrollar nuevos métodos para análisis de datos que permitan el uso eficiente de información genómica masiva en evaluaciones genéticas de interés agro-biotecnológico. Los objetivos específicos incluyen la comparación, respecto a propiedades estadísticas y computacionales, de estrategias analíticas paramétricas con estrategias semiparamétricas y no-paramétricas. Se trabajará con aproximaciones por regresión del análisis de loci de caracteres cuantitativos bajo distintas estrategias y escenarios (reales y simulados) con distinto volúmenes de datos de marcadores moleculares. En el área paramétrica se pondrá especial énfasis en modelos mixtos, mientras que en el área no paramétrica se evaluarán algoritmos de redes neuronales, máquinas de soporte vectorial, filtros multivariados, suavizados del tipo LOESS y métodos basados en núcleos de reciente aparición. La propuesta semiparamétrica se basará en una estrategia de análisis en dos etapas orientadas a: 1) reducir la dimensionalidad de los datos genómicos y 2) modelar el fenotipo introduciendo sólo las señales moleculares más significativas. Con este trabajo se espera poner a disposición de investigadores de nuestro medio, nuevas herramientas y procedimientos de análisis que permitan maximizar la eficiencia en el uso de los recursos asignados a la masiva captura de datos genómicos y su aplicación en desarrollos agro-biotecnológicos.
Resumo:
El objetivo de este proyecto, enmarcado en el área de metodología de análisis en bioingeniería-biotecnología aplicadas al estudio del cancer, es el análisis y caracterización a través modelos estadísticos con efectos mixtos y técnicas de aprendizaje automático, de perfiles de expresión de proteínas y genes de las vías metabolicas asociadas a progresión tumoral. Dicho estudio se llevará a cabo mediante la utilización de tecnologías de alto rendimiento. Las mismas permiten evaluar miles de genes/proteínas en forma simultánea, generando así una gran cantidad de datos de expresión. Se hipotetiza que para un análisis e interpretación de la información subyacente, caracterizada por su abundancia y complejidad, podría realizarse mediante técnicas estadístico-computacionales eficientes en el contexto de modelos mixtos y técnias de aprendizaje automático. Para que el análisis sea efectivo es necesario contemplar los efectos ocasionados por los diferentes factores experimentales ajenos al fenómeno biológico bajo estudio. Estos efectos pueden enmascarar la información subycente y así perder informacion relavante en el contexto de progresión tumoral. La identificación de estos efectos permitirá obtener, eficientemente, los perfiles de expresión molecular que podrían permitir el desarrollo de métodos de diagnóstico basados en ellos. Con este trabajo se espera poner a disposición de investigadores de nuestro medio, herramientas y procedimientos de análisis que maximicen la eficiencia en el uso de los recursos asignados a la masiva captura de datos genómicos/proteómicos que permitan extraer información biológica relevante pertinente al análisis, clasificación o predicción de cáncer, el diseño de tratamientos y terapias específicos y el mejoramiento de los métodos de detección como así tambien aportar al entendimieto de la progresión tumoral mediante análisis computacional intensivo.
Resumo:
A partir de las últimas décadas se ha impulsado el desarrollo y la utilización de los Sistemas de Información Geográficos (SIG) y los Sistemas de Posicionamiento Satelital (GPS) orientados a mejorar la eficiencia productiva de distintos sistemas de cultivos extensivos en términos agronómicos, económicos y ambientales. Estas nuevas tecnologías permiten medir variabilidad espacial de propiedades del sitio como conductividad eléctrica aparente y otros atributos del terreno así como el efecto de las mismas sobre la distribución espacial de los rendimientos. Luego, es posible aplicar el manejo sitio-específico en los lotes para mejorar la eficiencia en el uso de los insumos agroquímicos, la protección del medio ambiente y la sustentabilidad de la vida rural. En la actualidad, existe una oferta amplia de recursos tecnológicos propios de la agricultura de precisión para capturar variación espacial a través de los sitios dentro del terreno. El óptimo uso del gran volumen de datos derivado de maquinarias de agricultura de precisión depende fuertemente de las capacidades para explorar la información relativa a las complejas interacciones que subyacen los resultados productivos. La covariación espacial de las propiedades del sitio y el rendimiento de los cultivos ha sido estudiada a través de modelos geoestadísticos clásicos que se basan en la teoría de variables regionalizadas. Nuevos desarrollos de modelos estadísticos contemporáneos, entre los que se destacan los modelos lineales mixtos, constituyen herramientas prometedoras para el tratamiento de datos correlacionados espacialmente. Más aún, debido a la naturaleza multivariada de las múltiples variables registradas en cada sitio, las técnicas de análisis multivariado podrían aportar valiosa información para la visualización y explotación de datos georreferenciados. La comprensión de las bases agronómicas de las complejas interacciones que se producen a la escala de lotes en producción, es hoy posible con el uso de éstas nuevas tecnologías. Los objetivos del presente proyecto son: (l) desarrollar estrategias metodológicas basadas en la complementación de técnicas de análisis multivariados y geoestadísticas, para la clasificación de sitios intralotes y el estudio de interdependencias entre variables de sitio y rendimiento; (ll) proponer modelos mixtos alternativos, basados en funciones de correlación espacial de los términos de error que permitan explorar patrones de correlación espacial de los rendimientos intralotes y las propiedades del suelo en los sitios delimitados. From the last decades the use and development of Geographical Information Systems (GIS) and Satellite Positioning Systems (GPS) is highly promoted in cropping systems. Such technologies allow measuring spatial variability of site properties including electrical conductivity and others soil features as well as their impact on the spatial variability of yields. Therefore, site-specific management could be applied to improve the efficiency in the use of agrochemicals, the environmental protection, and the sustainability of the rural life. Currently, there is a wide offer of technological resources to capture spatial variation across sites within field. However, the optimum use of data coming from the precision agriculture machineries strongly depends on the capabilities to explore the information about the complex interactions underlying the productive outputs. The covariation between spatial soil properties and yields from georeferenced data has been treated in a graphical manner or with standard geostatistical approaches. New statistical modeling capabilities from the Mixed Linear Model framework are promising to deal with correlated data such those produced by the precision agriculture. Moreover, rescuing the multivariate nature of the multiple data collected at each site, several multivariate statistical approaches could be crucial tools for data analysis with georeferenced data. Understanding the basis of complex interactions at the scale of production field is now within reach the use of these new techniques. Our main objectives are: (1) to develop new statistical strategies, based on the complementarities of geostatistics and multivariate methods, useful to classify sites within field grown with grain crops and analyze the interrelationships of several soil and yield variables, (2) to propose mixed linear models to predict yield according spatial soil variability and to build contour maps to promote a more sustainable agriculture.