944 resultados para Stationary wavelet packet transform (SWPT)
Resumo:
Laser plasma interferograms are currently analyzed by extraction of the phase-shift map with fast Fourier transform (FFT) techniques [Appl. Opt. 18, 3101 (1985)]. This methodology works well when interferograms are only marginally affected by noise and reduction of fringe visibility, but it can fail to produce accurate phase-shift maps when low-quality images are dealt with. We present a novel procedure for a phase-shift map computation that makes extensive use of the ridge extraction in the continuous wavelet transform (CWT) framework. The CWT tool is flexible because of the wide adaptability of the analyzing basis, and it can be accurate because of the intrinsic noise reduction in the ridge extraction. A comparative analysis of the accuracy performances of them new tool and the FFT-based one shows that the CWT-based tool produces phase maps considerably less noisy and that it can better resolve local inhomogeneties. (C) 2001 Optical Society of America.
Resumo:
Latent semantic indexing (LSI) is a technique used for intelligent information retrieval (IR). It can be used as an alternative to traditional keyword matching IR and is attractive in this respect because of its ability to overcome problems with synonymy and polysemy. This study investigates various aspects of LSI: the effect of the Haar wavelet transform (HWT) as a preprocessing step for the singular value decomposition (SVD) in the key stage of the LSI process; and the effect of different threshold types in the HWT on the search results. The developed method allows the visualisation and processing of the term document matrix, generated in the LSI process, using HWT. The results have shown that precision can be increased by applying the HWT as a preprocessing step, with better results for hard thresholding than soft thresholding, whereas standard SVD-based LSI remains the most effective way of searching in terms of recall value.
Resumo:
The inclusion of the Discrete Wavelet Transform in the JPEG-2000 standard has added impetus to the research of hardware architectures for the two-dimensional wavelet transform. In this paper, a VLSI architecture for performing the symmetrically extended two-dimensional transform is presented. This architecture conforms to the JPEG-2000 standard and is capable of near-optimal performance when dealing with the image boundaries. The architecture also achieves efficient processor utilization. Implementation results based on a Xilinx Virtex-2 FPGA device are included.
Resumo:
A rapid design methodology for biorthogonal wavelet transform cores has been developed. This methodology is based on a generic, scaleable architecture for the wavelet filters. The architecture offers efficient hardware utilization by combining the linear phase property of biorthogonal filters with decimation in a MAC based implementation. The design has been captured in VHDL and parameterized in terms of wavelet type, data word length and coefficient word length. The control circuit is embedded within the cores and allows them to be cascaded without any interface glue logic for any desired level of decomposition. The design time to produce silicon layout of a biorthogonal wavelet based system is typically less than a day. The resulting silicon cores produced are comparable in area and performance to hand-crafted designs. The designs are portable across a range of foundries and are also applicable to FPGA and PLD implementations.
Resumo:
The aim of this study was to compare time-domain waveform analysis of second-trimester uterine artery Doppler using the resistance index (RI) with waveform analysis using a mathematical tool known as wavelet transform for the prediction of pre-eclampsia (PE). This was a retrospective, nested case-cohort study of 336 women, 37 of whom subsequently developed PE. Uterine artery Doppler waveforms were analysed using both RI and waveform analysis. The utility of these indices in screening for PE was then evaluated using receiver operating characteristic curves. There were significant differences in uterine artery RI between the PE women and those with normal pregnancy outcome. After wavelet analysis, significant difference in the mean amplitude in wavelet frequency band 4 was noted between the 2 groups. The sensitivity for both Doppler RI and frequency band 4 for the detection of PE at a 10% false-positive rate was 45%. This small study demonstrates the application of wavelet transform analysis of uterine artery Doppler waveforms in screening for PE. Further prospective studies are needed in order to clearly define if this analytical approach to waveform analysis may have the potential to improve the detection of PE by uterine artery Doppler screening.
Resumo:
In this paper, we present a unified approach to an energy-efficient variation-tolerant design of Discrete Wavelet Transform (DWT) in the context of image processing applications. It is to be noted that it is not necessary to produce exactly correct numerical outputs in most image processing applications. We exploit this important feature and propose a design methodology for DWT which shows energy quality tradeoffs at each level of design hierarchy starting from the algorithm level down to the architecture and circuit levels by taking advantage of the limited perceptual ability of the Human Visual System. A unique feature of this design methodology is that it guarantees robustness under process variability and facilitates aggressive voltage over-scaling. Simulation results show significant energy savings (74% - 83%) with minor degradations in output image quality and avert catastrophic failures under process variations compared to a conventional design. © 2010 IEEE.
Resumo:
In this paper, the fractional Fourier transform (FrFT) is applied to the spectral bands of two component mixture containing oxfendazole and oxyclozanide to provide the multicomponent quantitative prediction of the related substances. With this aim in mind, the modulus of FrFT spectral bands are processed by the continuous Mexican Hat family of wavelets, being denoted by MEXH-CWT-MOFrFT. Four modulus sets are obtained for the parameter a of the FrFT going from 0.6 up to 0.9 in order to compare their effects upon the spectral and quantitative resolutions. Four linear regression plots for each substance were obtained by measuring the MEXH-CWT-MOFrFT amplitudes in the application of the MEXH family to the modulus of the FrFT. This new combined powerful tool is validated by analyzing the artificial samples of the related drugs, and it is applied to the quality control of the commercial veterinary samples.
Resumo:
In this paper, the fractional Fourier transform (FrFT) is applied to the spectral bands of two component mixture containing oxfendazole and oxyclozanide to provide the multicomponent quantitative prediction of the related substances. With this aim in mind, the modulus of FrFT spectral bands are processed by the continuous Mexican Hat family of wavelets, being denoted by MEXH-CWT-MOFrFT. Four modulus sets are obtained for the parameter a of the FrFT going from 0.6 up to 0.9 in order to compare their effects upon the spectral and quantitative resolutions. Four linear regression plots for each substance were obtained by measuring the MEXH-CWT-MOFrFT amplitudes in the application of the MEXH family to the modulus of the FrFT. This new combined powerful tool is validated by analyzing the artificial samples of the related drugs, and it is applied to the quality control of the commercial veterinary samples.
Resumo:
A method for computer- aided diagnosis of micro calcification clusters in mammograms images presented . Micro calcification clus.eni which are an early sign of bread cancer appear as isolated bright spots in mammograms. Therefore they correspond to local maxima of the image. The local maxima of the image is lint detected and they are ranked according to it higher-order statistical test performed over the sub band domain data
Resumo:
This paper presents the application of wavelet processing in the domain of handwritten character recognition. To attain high recognition rate, robust feature extractors and powerful classifiers that are invariant to degree of variability of human writing are needed. The proposed scheme consists of two stages: a feature extraction stage, which is based on Haar wavelet transform and a classification stage that uses support vector machine classifier. Experimental results show that the proposed method is effective
Resumo:
This paper compares the most common digital signal processing methods of exon prediction in eukaryotes, and also proposes a technique for noise suppression in exon prediction. The specimen used here which has relevance in medical research, has been taken from the public genomic database - GenBank.Here exon prediction has been done using the digital signal processing methods viz. binary method, EIIP (electron-ion interaction psuedopotential) method and filter methods. Under filter method two filter designs, and two approaches using these two designs have been tried. The discrete wavelet transform has been used for de-noising of the exon plots.Results of exon prediction based on the methods mentioned above, which give values closest to the ones found in the NCBI database are given here. The exon plot de-noised using discrete wavelet transform is also given.Alterations to the proven methods as done by the authors, improves performance of exon prediction algorithms. Also it has been proven that the discrete wavelet transform is an effective tool for de-noising which can be used with exon prediction algorithms
Resumo:
The soil microflora is very heterogeneous in its spatial distribution. The origins of this heterogeneity and its significance for soil function are not well understood. A problem for understanding spatial variation better is the assumption of statistical stationarity that is made in most of the statistical methods used to assess it. These assumptions are made explicit in geostatistical methods that have been increasingly used by soil biologists in recent years. Geostatistical methods are powerful, particularly for local prediction, but they require the assumption that the variability of a property of interest is spatially uniform, which is not always plausible given what is known about the complexity of the soil microflora and the soil environment. We have used the wavelet transform, a relatively new innovation in mathematical analysis, to investigate the spatial variation of abundance of Azotobacter in the soil of a typical agricultural landscape. The wavelet transform entails no assumptions of stationarity and is well suited to the analysis of variables that show intermittent or transient features at different spatial scales. In this study, we computed cross-variograms of Azotobacter abundance with the pH, water content and loss on ignition of the soil. These revealed scale-dependent covariation in all cases. The wavelet transform also showed that the correlation of Azotobacter abundance with all three soil properties depended on spatial scale, the correlation generally increased with spatial scale and was only significantly different from zero at some scales. However, the wavelet analysis also allowed us to show how the correlation changed across the landscape. For example, at one scale Azotobacter abundance was strongly correlated with pH in part of the transect, and not with soil water content, but this was reversed elsewhere on the transect. The results show how scale-dependent variation of potentially limiting environmental factors can induce a complex spatial pattern of abundance in a soil organism. The geostatistical methods that we used here make assumptions that are not consistent with the spatial changes in the covariation of these properties that our wavelet analysis has shown. This suggests that the wavelet transform is a powerful tool for future investigation of the spatial structure and function of soil biota. (c) 2006 Elsevier Ltd. All rights reserved.