912 resultados para Stable distributions
Resumo:
Drosophila simulans strains infected with three different Wolbachia strains were generated by experimental injection of a third symbiont into a naturally double-infected strain. This transfer led to a substantial increase in total Wolbachia density in the host strain. Each of the three symbionts was stably transmitted in the presence of the other two. Triple-infected males were incompatible with double-infected females. No evidence was obtained for interference between modification effects of the different Wolbachia strains in males. Some incompatibility was observed between triple-infected males and females. However, this incompatibility reaction is not a specific property of triple-infected flies, because it was also observed in double-infected strains.
Resumo:
The adsorbed film in small cylindrical mesopores is studied by using MCM-41 samples of uniform cylindrical channels as model systems. It is found that at a given relative pressure, the smaller the pore radius, the thicker the adsorbed film is, as postulated by Broekhoff and De Beer. Thermodynamics analysis established that the stability of the adsorbed film is determined by interface curvature and the potential of interaction between adsorbate and adsorbent. A semiempirical equation is proposed to describe the state of stable adsorbed films in cylindrical mesopores. It is also shown to be useful in calculations of pore size distributions of mesoporous solids.
Resumo:
Monocrotaline is a pyrrolizidine alkaloid known to cause toxicity in humans and animals. Its mechanism of biological action is still unclear although DNA crosslinking has been suggested to a play a role in its activity. In this study we found that an active metabolite of monocrotaline, dehydromonocrotaline (DHM), alkylates guanines at the N7 position of DNA with a preference for 5'-GG and 5'-GA sequences; In addition, it generates piperidine- and heat-resistant multiple DNA crosslinks, as confirmed by electrophoresis and electron microscopy. On the basis of these findings, we propose that DHM undergoes rapid polymerization to a structure which is able to crosslink several fragments of DNA.
Resumo:
Poor root development due to constraining soil conditions could be an important factor influencing health of urban trees. Therefore, there is a need for efficient techniques to analyze the spatial distribution of tree roots. An analytical procedure for describing tree rooting patterns from X-ray computed tomography (CT) data is described and illustrated. Large irregularly shaped specimens of undisturbed sandy soil were sampled from Various positions around the base of trees using field impregnation with epoxy resin, to stabilize the cohesionless soil. Cores approximately 200 mm in diameter by 500 mm in height were extracted from these specimens. These large core samples were scanned with a medical X-ray CT device, and contiguous images of soil slices (2 mm thick) were thus produced. X-ray CT images are regarded as regularly-spaced sections through the soil although they are not actual 2D sections but matrices of voxels similar to 0.5 mm x 0.5 mm x 2 mm. The images were used to generate the equivalent of horizontal root contact maps from which three-dimensional objects, assumed to be roots, were reconstructed. The resulting connected objects were used to derive indices of the spatial organization of roots, namely: root length distribution, root length density, root growth angle distribution, root spatial distribution, and branching intensity. The successive steps of the method, from sampling to generation of indices of tree root organization, are illustrated through a case study examining rooting patterns of valuable urban trees. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Fine-grained pyrite is the earliest generation of pyrite and the most abundant sulfide within the Urquhart Shale at Mount Isa, northwest Queensland. The pyrite is intimately interbanded with ore-grade Pb-Zn miner alization at the Mount Isa mine but is also abundant north and south of the mine at several stratigraphic horizons within the Urquhart Shale. Detailed sedimentologic, petrographic, and sulfur isotope studies of the Urquhart Shale, mostly north of the mine, reveal that the fine-grained pyrite (delta(34)S = -3.3 to +26.3 parts per thousand) formed by thermochemical sulfate reduction during diagenesis. The sulfate source was local sulfate evaporites, pseudo morphs of which are present throughout the Urquhart Shale (i.e., gypsum, anhydrite, and barite). Deep-burial diagenetic replacement of these evaporites resulted in sulfate-bearing ground waters which migrated parallel to bedding. Fine-grained pyrite formed where these fluids infiltrated and then interacted with carbon-rich laminated siltstones. Comparison of the sulfur isotope systematics of fine-grained pyrite and spatially associated base metal sulfides from the Mount Isa Pb-Zn and Cu orebodies indicates a common sulfur source of ultimately marine origin for all sulfide types. Different sulfur isotope ratio distributions for the various sulfides are the result of contrasting formation mechanisms and/or depositional conditions rather than differing sulfur sources. The sulfur isotope systematics of the base metal and associated iron sulfide generations are consistent with mineralization by reduced hydrothermal fluids, perhaps generated by bulk reduction of evaporite-sourced sulfate-bearing waters generated deeper in the Mount Isa Group, the sedimentary sequence which contains the Urquhart Shale. The available sulfur isotope data from the Mount Isa orebodies are consistent with either a chemically and thermally zoned, evolving Cu-Pb-Zn system, or discrete Cu and Pb-Zn mineralizing events linked by a common sulfur source.
Development and characterization of novel potent and stable inhibitors of endopeptidase EC 3.4.24.15
Resumo:
Solid-phase synthesis was used to prepare a series of modifications to the selective and potent inhibitor of endopeptidase EC 3.4.24.15 (EP24.15), N-[1(R,S)-carboxy-3-phenylpropyl]-Ala-Ala-Tyr-p-aminobenzoate (cFP), which is degraded at the Ala-Tyr bond, thus severely limiting its utility in vivo. Reducing the amide bond between the Ala and Tyr decreased the potency of the inhibitor to 1/1000. However, the replacement of the second alanine residue immediately adjacent to the tyrosine with alpha-aminoisobutyric acid gave a compound (JA-2) that was equipotent with cFP, with a K-i of 23 nM. Like cFP, JA-2 inhibited the closely related endopeptidase EC 3.4.24.16 1/20 to 1/30 as potently as it did EP24.15, and did not inhibit the other thermolysin-like endopeptidases angiotensin-converting enzyme, endothelin-converting enzyme and neutral endopeptidase. The biological stability of JA-2 was investigated by incubation with a number of membrane and soluble sheep tissue extracts. In contrast with cFP, JA-2 remained intact after 48 h of incubation with all tissues examined. Further modifications to the JA-2 compound failed to improve the potency of this inhibitor. Hence JA-2 is a potent, EP24.15-preferential and biologically stable inhibitor, therefore providing a valuable tool for further assessing the biological functions of EP24.15.
Resumo:
We have developed a novel inhibitor of the metalloendopeptidases EC 3.4.24.15 (EP24.15) and EC 3.4.24.16 (EP24.16), N-[1-(R, S)-carboxy-3-phenylpropyl]-Ala-Aib-Tyr-p-aminobenzoate (JA2), in which alpha-aminoisobutyric acid (Aib) is substituted for an alanine in a well-described but unstable inhibitor, cFP-AAY-pAB. This substitution increases the resistance of the inhibitor to degradation without altering potency. In the present study, we investigated the effects of JA2 (5 mg/kg) on the responses of mean arterial pressure to bradykinin, angiotensin I, and angiotensin II in conscious rabbits. The depressor responses to both low (10 ng/kg) and high (100 ng/kg) doses of bradykinin were increased 7.0 +/- 2.7-fold and 1.5 +/- 0.3-fold, respectively, during the 30 minutes after JA2 administration (mean+/-SEM, n=8). Bradykinin potentiation was undiminished 4 hours after JA2 injection. In contrast, the hypertensive effects of angiotensins I and II were unaltered, indicating that the bradykinin-potentiating effects were not due to angiotensin-converting enzyme inhibition. These data suggest that JA2 is not only a potent and specific inhibitor of EP24.15 and EP24.16 but is also stable in vivo. Furthermore, the potentiation of bradykinin-induced hypotension by JA2 suggests for the first time a role for one or both of these peptidases in the metabolism of bradykinin in the circulation.
Resumo:
This note considers continuous-time Markov chains whose state space consists of an irreducible class, C, and an absorbing state which is accessible from C. The purpose is to provide results on mu-invariant and mu-subinvariant measures where absorption occurs with probability less than one. In particular, the well-known premise that the mu-invariant measure, m, for the transition rates be finite is replaced by the more natural premise that m be finite with respect to the absorption probabilities. The relationship between mu-invariant measures and quasi-stationary distributions is discussed. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
We shall be concerned with the problem of determining quasi-stationary distributions for Markovian models directly from their transition rates Q. We shall present simple conditions for a mu-invariant measure m for Q to be mu-invariant for the transition function, so that if m is finite, it can be normalized to produce a quasi-stationary distribution. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
In this article, a new hybrid model for estimating the pore size distribution of micro- and mesoporous materials is developed, and tested with the adsorption data of nitrogen, oxygen, and argon on ordered mesoporous materials reported in the literature. For the micropore region, the model uses the Dubinin-Rudushkevich (DR) isotherm with the Chen-Yang modification. A recent isotherm model of the authors for nonporous materials, which uses a continuum-mechanical model for the multilayer region and the Unilan model for the submonolayer region, has been extended for adsorption in mesopores. The experimental data is inverted using regularization to obtain the pore size distribution. The present model was found to be successful in predicting the pore size distribution of pure as well as binary physical mixtures of MCM-41 synthesized with different templates, with results in agreement with those from the XRD method and nonlocal density functional theory. It was found that various other recent methods, as well as the classical Broekhoff and de Beer method, underpredict the pore diameter of MCM-41. The present model has been successfully applied to MCM-48, SBA's, CMK, KIT, HMS, FSM, MTS, mesoporous fly ash, and a large number of other regular mesoporous materials.
Resumo:
The present paper proposes an approach to obtaining the activation energy distribution for chemisorption of oxygen onto carbon surfaces, while simultaneously allowing for the activation energy dependence of the pre-exponential factor of the rate constant. Prior studies in this area have considered this factor to be uniform, thereby biasing estimated distributions. The results show that the derived activation energy distribution is not sensitive to the chemisorption mechanism because of the step function like property of the coverage. The activation energy distribution is essentially uniform for some carbons, and has two or possibly more discrete stages, suggestive of at least two types of sites, each with its own uniform distribution. The pre-exponential factors of the reactions are determined directly from the experimental data, and are found not to be constant as assumed in earlier work, but correlated with the activation energy. The latter results empirically follow an exponential function, supporting some earlier statistical and experimental work. The activation energy distribution obtained in the present paper permits improved correlation of chemisorption data in comparison to earlier studies. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
In this paper, the minimum-order stable recursive filter design problem is proposed and investigated. This problem is playing an important role in pipeline implementation sin signal processing. Here, the existence of a high-order stable recursive filter is proved theoretically, in which the upper bound for the highest order of stable filters is given. Then the minimum-order stable linear predictor is obtained via solving an optimization problem. In this paper, the popular genetic algorithm approach is adopted since it is a heuristic probabilistic optimization technique and has been widely used in engineering designs. Finally, an illustrative example is sued to show the effectiveness of the proposed algorithm.