997 resultados para Stable carbon and oxygen isotopes
Resumo:
Benthic oxygen and carbon isotopic results from a depth transect on Maud Rise, Antarctica, provide the first evidence for Warm Saline Deep Water (WSDW) in the Paleogene oceans. Distinct reversals occur in the oxygen isotopic gradient between the shallower Hole 689B (Eocene depth ~1400 m; present-day depth 2080 m) and the deeper Hole 690B (Eocene depth ~2250 m; present-day depth 2914 m). The isotopic reversals, well developed by at least 46 Ma (middle middle Eocene), existed for much of the remaining Paleogene. We do not consider these reversals to be artifacts of differential diagenesis between the two sites or to have resulted from other potentially complicating factors. This being so, the results show that deep waters at Hole 690B were significantly warmer than deep waters at the shallower Hole 689B. A progressive decrease and eventual reversal in benthic to planktonic delta18O gradients in Hole 690B, demonstrate that the deeper waters became warmer relative to Antarctic surface waters during the Eocene. The warmer deep waters of the Paleogene are inferred to have been produced at middle to low latitudes, probably in the Tethyan region which contained extensive shallow-water platforms, ideal sites for the formation of high salinity water through evaporative processes. The ocean during the Eocene, and perhaps the Paleocene, is inferred to have been two-layered, consisting of warm, saline deep waters formed at low latitudes and overlain by cooler waters formed at high latitudes. This thermospheric ocean, dominated by halothermal circulation we name Proteus. The Neogene and modern psychrospheric ocean Oceanus is dominated by thermohaline circulation of deep waters largely formed at high latitudes. An intermediate condition existed during the Oligocene, with a three-layered ocean that consisted of cold, dense deep waters formed in the Antarctic (Proto-AABW), overlain by warm, saline deep waters from low latitudes, and in turn overlain by cool waters formed in the polar regions. This we name Proto-oceanus which combined both halothermal and thermohaline processes. The sequence of high latitude, major, climatic change inferred from the oxygen isotopic records is as follows: generally cooler earlier Paleocene; warming during the late Paleocene; climax of Cenozoic warmth during the early Eocene and continuing into the early middle Eocene; cooling mainly in a series of steps during the remainder of the Paleogene. Superimposed upon this Paleogene pattern, the Paleocene/Eocene boundary is marked by a brief but distinct warming that involved deep to surface waters and a reduction in surface to deep carbon and oxygen isotopic gradients. This event coincided with major extinctions among the deep-sea benthic foraminifers as shown by Thomas (1990 doi:10.2973/odp.proc.sr.113.123.1990). Salinity has played a major role in deep ocean circulation, and thus paleotemperatures cannot be inferred directly from the oxygen isotopic composition of Paleogene benthic foraminifers without first accounting for the salinity effect.
Resumo:
Bulk carbon isotope records are an effective chemostratigraphic tool for the middle Miocene because of the large and systematic variation in first-order d13C signals. Bulk d13C measurements support the presence of a hiatus at 305 mbsf in Hole 805B (latest middle Miocene), provisionally located while on board ship using biostratigraphic and magnetostratigraphic events. Records at Holes 805B and 806B show the middle Miocene Monterey carbon isotope excursion although the record at Hole 806B is apparently more stratigraphically continuous. Detailed analysis of multispecies foraminiferal carbon isotope records during the middle Miocene ("Monterey excursion") segment at Hole 806B support the assertion that this carbon isotope excursion comprises mainly between-reservoir effects. The benthic d18O data increase after 15.3 Ma, which we suggest corresponds to the mid-Miocene cooling step/ice volume increase of other authors. Planktonic foraminiferal d18O evidence exists for steepening of the thermocline at 17.4 Ma. A second-order d13C excursion superimposed at 13.8 Ma on the first-order Monterey excursion is associated with a second-order negative d18O excursion.
Resumo:
Miocene to Recent species of planktic foraminifera in the Globorotalia (Globoconella) lineage evolved entirely within the thermocline. All species are most abundant within subtropical-temperate watermasses throughout their history. The near stasis in distribution within the thermocline and the subtropical convergence suggests the major morphological changes in Globorotalia (Globoconella) may have occurred through habitat subdivision rather than by vicariant shifts into new watermasses. At the Rio Grande Rise, in the South Atlantic, modern G. inflata is 0.66-0.84? more positive for delta18O than the most enriched coexisting Globigerinoides sacculifer and probably grows in the mid thermocline deeper than 325 m. All extinct globoconellid species have mean delta18O ratios 0.5-0.8? more positive than Globigerinoides trilobus and G. sacculifer and probably lived within the thermocline as well. Major events in skeletal evolution are poorly correlated with changes in delta18O in this group. These include evolutionary transitions to compressed, smooth-walled tests and acquisition of keels. In addition, morphological reversals from the umbilically-inflated G. conomiozea to biconvex G. pliozea and to unkeeled G. puncticulata occur in the absence of changes in delta18O signature. Instead, the ranges of delta18O between different species almost completely overlap once corrected for temporal changes in delta18O of sea water. Foraminifera morphologies have been widely considered to evolve in response to changes in watermasses or depth habitats. However, the variety of skeletal shapes in the globoconellid lineage apparently are not adaptations to a progressive radiation from the surface mixed layer into deeper waters.
Resumo:
The Late Miocene-Early Pliocene paleoclimatic history has been evaluated for a deep drilled sediment sequence at Deep Sea Drilling Project Site 281 and a shallow water marine sediment sequence at Blind River, New Zealand, both of which lay within the Subantarctic water mass during the Late Miocene. A major, faunally determined, cooling event within the latest Miocene at Site 281 and Blind River coincides with oxygen isotopic changes in benthonic foraminiferal composition at DSDP Site 284 considered by Shackleton and Kennett (1975) to indicate a significant increase in Antarctic ice sheet volume. However, at Site 281 benthonic foraminiferal oxygen isotopic changes do not record such a large increase in Antarctic ice volume. It is possible that the critical interval is within an unsampled section (no recovery) in the latest Miocene. Two benthonic oxygen isotopic events in the Late Miocene (0.5 ? and 1 ? in the light direction) may be useful as time-stratigraphic markers. A permanent, negative, carbon isotopic shift at both Site 281 and Blind River allows precise correlations to be made between the two sections and to other sites in the Pacific region. Close interval sampling below the carbon shift at Site 281 revealed dramatic fluctuations in surface-water temperatures prior to a latest Miocene interval of refrigeration (Kapitean) and a strong pulse of dissolution between 6.6 and 6.2 +/- 0.1 m.y. which may be related to a fundamental geochemical change in the oceans at the time of the carbon shift (6.3-6.2 m.y.). No similar close interval sampling at Blind River was possible because of a lack of outcrop over the critical interval. Paleoclimatic histories from the two sections are very similar. Surface water temperatures and Antarctic ice-cap volume appear to have been relatively stable during the late Middle-early Late Miocene (early-late Tongaporutuan). By 6.4 m.y. cooler conditions prevailed at Site 281. Between 6.3 and 6.2 -+ 0.1 m.y. the carbon isotopic shift occurred followed, within 100,000 yr, by a distinct shallowing of water depths at Blind River. The earliest Pliocene (Opoitian) is marked by increasing surface-water temperatures.
Resumo:
Oxygen and carbon isotope ratio measurements are presented for Globigerinoides ruber and for benthic species (mainly Uvigerina spp.) in the Pleistocene and uppermost Pliocene section of ODP Hole 677A in the Panama Basin. This provides the best available continuous Pleistocene stable isotope records from any location, fully justifying the recoring of DSDP Site 504. Oxygen isotope stage 22 (age about 0.85 Ma) was of similar magnitude to the most extensive glacials of the Brunhes and constitutes a logical base for the middle Pleistocene. Oxygen isotope stages as defined by Ruddiman et al. (1986, doi:10.1016/0012-821X(86)90024-5) and by Raymo et al. (1989, doi:10.1029/PA004i004p00413) back to stage 104 are recognized. Although the internationally agreed base of the Quaternary at or near stage 62 (about 1.6 Ma) is not marked by a major isotopic event, it does approximate the base of a regime characterized by highly regular 41,000-yr climate cycles. The records at Site 677 are ideal for time-series analyses and will permit a new attempt to develop a chronology for the early Pleistocene based on tuning to the orbital frequencies. The carbon isotope records also appear to contain considerable variance at orbital frequencies throughout the sequence analyzed.
Resumo:
In the latest Paleocene an abrupt shift to more negative d13C values has been documented at numerous marine and terrestrial sites (Bralower et al., 1997, doi:10.1130/0091-7613(1997)025<0963:HRROTL>2.3.CO;2; Cramer et al., 1999; Kaiho et al., 1996, doi:10.1029/96PA01021; Kennett and Stott, 1991, doi:10.1038/353225a0; Koch et al., 1992, doi:10.1038/358319a0; Stott et al., 1996; Thomas and Shackleton, 1996, doi:10.1144/GSL.SP.1996.101.01.20; Zachos et al., 1993). This carbon isotope event (CIE) is coincident with oxygen isotope data that indicate warming of surface waters at high latitudes of nearly 4°-6°C (Kennett and Stott, 1991, doi:10.1038/353225a0) and more moderate warming in the subtropics (Thomas et al., 1999, doi:10.1029/1999PA900031). Here we report 187Os/188Os isotope records from the North Atlantic and Indian Oceans which demonstrate a >10% increase in the 187Os/188Os ratio of seawater coincident with the late Paleocene CIE. This excursion to higher 187Os/188Os ratios is consistent with a global increase in weathering rates. The inference of increased chemical weathering during this interval of unusual warmth is significant because it provides empirical evidence supporting the operation of a feedback between chemical weathering rates and warm global climate, which acts to stabilize Earth's climate (Walker et al., 1981). Estimates of the duration of late Paleocene CIE (Bains et al., 1999, doi:10.1126/science.285.5428.724; Bralower et al., 1997, doi:10.1130/0091-7613(1997)025<0963:HRROTL>2.3.CO;2; Norris and Röhl, 1999, doi:10.1038/44545; Röhl et al., 2000, doi:10.1130/0091-7613(2000)28<927:NCFTLP>2.0.CO;2) in conjunction with the Os isotope data imply that intensified chemical weathering in response to warm, humid climates can occur on timescales of 104-105 years. This interpretation requires that the late Paleocene thermal maximum Os isotope excursion be produced mainly by increased Os flux to the ocean rather than a transient excursion to higher 187Os/188Os ratios in river runoff. Although we argue that the former is more likely than the latter, we cannot rule out significant changes in the 187Os/188Os ratio of rivers.
Resumo:
A core transect across the southwestern Greenland Sea reveals coeval events of extremely negative planktic and benthic delta13C excursions between 40 and 87 ka. The most pronounced event, event 1, began at peak Dansgaard-Oeschger stadial 22 (85 ka) with a duration of 18 k.y. During this episode, incursions of Atlantic Intermediate Water caused a bottom-water warming of up to 8 °C. The amplitude, timing, and geographic pattern of the delta13C events suggest that this bottom-water warming triggered clathrate instability along the East Greenland slope and a methane-induced depletion of delta13CDIC (DIC- dissolved inorganic carbon). Since delta13C event 1 matches a major peak in atmospheric CH4 concentration, this clathrate destabilization may have contributed to the rise in atmospheric CH4 and thus to climate warming over marine isotope stage 5.1.
Resumo:
The Denmark Strait Overflow (DSO) today compensates for the northward flowing Norwegian and Irminger branches of the North Atlantic Current that drive the Nordic heat pump. During the Last Glacial Maximum (LGM), ice sheets constricted the Denmark Strait aperture in addition to ice eustatic/isostatic effects which reduced its depth (today ~630 m) by ~130 m. These factors, combined with a reduced north-south density gradient of the water-masses, are expected to have restricted or even reversed the LGM DSO intensity. To better constrain these boundary conditions, we present a first reconstruction of the glacial DSO, using four new and four published epibenthic and planktic stable-isotope records from sites to the north and south of the Denmark Strait. The spatial and temporal distribution of epibenthic delta18O and delta13C maxima reveals a north-south density gradient at intermediate water depths from sigma0 ~28.7 to 28.4/28.1 and suggests that dense and highly ventilated water was convected in the Nordic Seas during the LGM. However, extremely high epibenthic delta13C values on top of the Mid-Atlantic Ridge document a further convection cell of Glacial North Atlantic Intermediate Water to the south of Iceland, which, however, was marked by much lower density (sigma0 ~28.1). The north-south gradient of water density possibly implied that the glacial DSO was directed to the south like today and fed Glacial North Atlantic Deep Water that has underthrusted the Glacial North Atlantic Intermediate Water in the Irminger Basin.