894 resultados para Stable And Unstable Manifolds
Resumo:
We study the interaction of resonances with the same order in families of integrable Hamiltonian systems. This can occur when the unperturbed Hamiltonian is at least cubic in the actions. An integrable perturbation coupling the action-angle variables leads to the disappearance of an island through the coalescence of stable and unstable periodic orbits and originates a complex orbit plus an isolated cubic resonance. The chaotic layer that appears when a general term is added to the Hamiltonian survives even after the disappearance of the unstable periodic orbit. © 1992.
Resumo:
Indices that report how much a contingency is stable or unstable in an electrical power system have been the object of several studies in the last decades. In some approaches, indices are obtained from time-domain simulation; others explore the calculation of the stability margin from the so-called direct methods, or even by neural networks.The goal is always to obtain a fast and reliable way of analysing large disturbance that might occur on the power systems. A fast classification in stable and unstable, as a function of transient stability is crucial for a dynamic security analysis. All good propositions as how to analyse contingencies must present some important features: classification of contingencies; precision and reliability; and efficiency computation. Indices obtained from time-domain simulations have been used to classify the contingencies as stable or unstable. These indices are based on the concepts of coherence, transient energy conversion between kinetic energy and potential energy, and three dot products of state variable. The classification of the contingencies using the indices individually is not reliable, since the performance of these indices varies with each simulated condition. However, collapsing these indices into a single one can improve the analysis significantly. In this paper, it is presented the results of an approach to filter the contingencies, by a simple classification of them into stable, unstable or marginal. This classification is performed from the composite indices obtained from step by step simulation with a time period of the clearing time plus 0.5 second. The contingencies originally classified as stable or unstable do not require this extra simulation. The methodology requires an initial effort to obtain the values of the intervals for classification, and the weights. This is performed once for each power system and can be used in different operating conditions and for different contingencies. No misplaced classification o- - ccurred in any of the tests, i.e., we detected no stable case classified as unstable or otherwise. The methodology is thus well fitted for it allows for a rapid conclusion about the stability of th system, for the majority of the contingencies (Stable or Unstable Cases). The tests, results and discussions are presented using two power systems: (1) the IEEE17 system, composed of 17 generators, 162 buses and 284 transmission lines; and (2) a South Brazilian system configuration, with 10 generators, 45 buses and 71 lines.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work was developed from the study by Araujo, R.A.N. et al. Stability regions around the components of the triple system 2001 SN263. (Monthly Notices Of The Royal Astronomical Society, 2012, v. 423(4), 3058-3073 p.) where it was studied the stable and unstable regions system (2001 SN263), which is a triple asteroid system, and these are celestial orbiting our sun. Being close to the Earth is characterized as NEA (Near-Earth Asteroids), asteroids and which periodically approach the Earth's orbit, given that there is great interest in the study and exploitation of these objects, it is the key can carry features that contribute to better understand the process of formation of our solar system. Study the dynamics of bodies that govern those systems proves to be greatly attractive because of the mutual gravitational perturbation of bodies and also by external disturbances. Recently, NEA 2001 SN263 was chosen as a target of Aster mission where a probe is sent for this triple system, appearing therefore the need for obtaining information for characterizing stable regions internal and external to the system, with respect to the effects of radiation pressure. First, this study demonstrated that the integrator used showed satisfactory results of the orbital evolution of bodies in accordance with previous studies and also the characterization of stable and unstable regions brought similar results to the study by Araujo et al. (2012). From these results it was possible to carry out the implementation of the radiation pressure in the system in 2001 SN263, in a region close to the central body, where the simulations were carried out, which brought as a result that the regions before being characterized as stable in unstable true for small particles size from 1 to 5 micrometers. So the next orbital region to the central body and the ... ( Complete abstract click electronic access below)
Resumo:
This work was developed from the study by Araujo, R.A.N. et al. Stability regions around the components of the triple system 2001 SN263. (Monthly Notices Of The Royal Astronomical Society, 2012, v. 423(4), 3058-3073 p.) where it was studied the stable and unstable regions system (2001 SN263), which is a triple asteroid system, and these are celestial orbiting our sun. Being close to the Earth is characterized as NEA (Near-Earth Asteroids), asteroids and which periodically approach the Earth's orbit, given that there is great interest in the study and exploitation of these objects, it is the key can carry features that contribute to better understand the process of formation of our solar system. Study the dynamics of bodies that govern those systems proves to be greatly attractive because of the mutual gravitational perturbation of bodies and also by external disturbances. Recently, NEA 2001 SN263 was chosen as a target of Aster mission where a probe is sent for this triple system, appearing therefore the need for obtaining information for characterizing stable regions internal and external to the system, with respect to the effects of radiation pressure. First, this study demonstrated that the integrator used showed satisfactory results of the orbital evolution of bodies in accordance with previous studies and also the characterization of stable and unstable regions brought similar results to the study by Araujo et al. (2012). From these results it was possible to carry out the implementation of the radiation pressure in the system in 2001 SN263, in a region close to the central body, where the simulations were carried out, which brought as a result that the regions before being characterized as stable in unstable true for small particles size from 1 to 5 micrometers. So the next orbital region to the central body and the ... ( Complete abstract click electronic access below)
Resumo:
The vestibular-ocular reflex assessment is important, but not enough. Tridimensional electromagnetic sensor systems represent a new method to assess posturography. Aim: To assess body sway in healthy subjects who had positive Dix Hallpike and Epley maneuvers and with other vestibular dysfunctions by means of a three-dimensional system. Study design: Prospective. Materials and Methods: We had 23 healthy women, 15 with peripheral vestibular dysfunction found upon caloric test and 10 with positive Epley and Dix Hallpike maneuvers. All tests performed in the following positions: open and closed eyes on stable and unstable surfaces. Results: With the Eyes Open and on a stable surface, p < 0.01 between the control group and the one with peripheral vestibular dysfunction in all variables, except the a-p maximum, full speed and mediolateral trajectory velocity, which had a p < 0.01 between the group with vestibular dysfunction and controls in all positions. The group with positive Epley and Dix Hallpike maneuvers had p < 0.01 at full speed and in its components in the x and y in positions with open and eyes closed on an unstable surface. Conclusion: The tridimensional electromagnetic sensors system was able to generate reliable information about body sway in the study volunteers.
Resumo:
BACKGROUND: Whether bivalirudin is superior to unfractionated heparin in patients with stable or unstable angina who undergo percutaneous coronary intervention (PCI) after pretreatment with clopidogrel is unknown. METHODS: We enrolled 4570 patients with stable or unstable angina (with normal levels of troponin T and creatine kinase MB) who were undergoing PCI after pretreatment with a 600-mg dose of clopidogrel at least 2 hours before the procedure; 2289 patients were randomly assigned in a double-blind manner to receive bivalirudin, and 2281 to receive unfractionated heparin. The primary end point was the composite of death, myocardial infarction, urgent target-vessel revascularization due to myocardial ischemia within 30 days after randomization, or major bleeding during the index hospitalization (with a net clinical benefit defined as a reduction in the incidence of the end point). The secondary end point was the composite of death, myocardial infarction, or urgent target-vessel revascularization. RESULTS: The incidence of the primary end point was 8.3% (190 patients) in the bivalirudin group as compared with 8.7% (199 patients) in the unfractionated-heparin group (relative risk, 0.94; 95% confidence interval [CI], 0.77 to 1.15; P=0.57). The secondary end point occurred in 134 patients (5.9%) in the bivalirudin group and 115 patients (5.0%) in the unfractionated-heparin group (relative risk, 1.16; 95% CI, 0.91 to 1.49; P=0.23). The incidence of major bleeding was 3.1% (70 patients) in the bivalirudin group and 4.6% (104 patients) in the unfractionated-heparin group (relative risk, 0.66; 95% CI, 0.49 to 0.90; P=0.008). CONCLUSIONS: In patients with stable and unstable angina who underwent PCI after pretreatment with clopidogrel, bivalirudin did not provide a net clinical benefit (i.e., it did not reduce the incidence of the composite end point of death, myocardial infarction, urgent target-vessel revascularization, or major bleeding) as compared with unfractionated heparin, but it did significantly reduce the incidence of major bleeding. (ClinicalTrials.gov number, NCT00262054.)
Resumo:
In the current market system, power systems are operated at higher loads for economic reasons. Power system stability becomes a genuine concern in such operating conditions. In case of failure of any larger component, the system may become stressed. These events may start cascading failures, which may lead to blackouts. One of the main reasons of the major recorded blackout events has been the unavailability of system-wide information. Synchrophasor technology has the capability to provide system-wide real time information. Phasor Measurement Units (PMUs) are the basic building block of this technology, which provide the Global Positioning System (GPS) time-stamped voltage and current phasor values along with the frequency. It is being assumed that synchrophasor data of all the buses is available and thus the whole system is fully observable. This information can be used to initiate islanding or system separation to avoid blackouts. A system separation strategy using synchrophasor data has been developed to answer the three main aspects of system separation: (1) When to separate: One class support machines (OC-SVM) is primarily used for the anomaly detection. Here OC-SVM was used to detect wide area instability. OC-SVM has been tested on different stable and unstable cases and it is found that OC-SVM has the capability to detect the wide area instability and thus is capable to answer the question of “when the system should be separated”. (2) Where to separate: The agglomerative clustering technique was used to find the groups of coherent buses. The lines connecting different groups of coherent buses form the separation surface. The rate of change of the bus voltage phase angles has been used as the input to this technique. This technique has the potential to exactly identify the lines to be tripped for the system separation. (3) What to do after separation: Load shedding was performed approximately equal to the sum of power flows along the candidate system separation lines should be initiated before tripping these lines. Therefore it is recommended that load shedding should be initiated before tripping the lines for system separation.
Resumo:
We study experimentally the dynamic properties of a fully integrated high power master-oscillator power-amplifier emitting at 1.5 μm under continuous wave and gain-switching conditions. High peak power (2.7 W) optical pulses with short duration (~ 110 ps) have been generated by gain switching the master-oscillator. We show the existence of working points at very close driving conditions with stable or unstable regimes caused by the compound cavity effects. The optical and radio-frequency spectra of stable and unstable operating points are analyzed.