986 resultados para Square-law nonlinearity symbol timing estimation
Resumo:
In this paper, we investigate the performance of multiple-input multiple-output (MIMO) transmit beamforming (TB) systems in the presence of nonlinear high-power amplifiers (HPAs). Due to the suboptimality of maximal ratio transmission/maximal ratio combining (MRT/MRC) under HPA nonlinearity, quantized equal gain transmission (QEGT) is suggested as a feasible TB scheme. The effect of HPA nonlinearity on the performance of MIMO QEGT/MRC is evaluated in terms of the average symbol error probability (SEP) and system capacity, considering transmission over uncorrelated quasi-static frequency-flat Rayleigh fading channels. Numerical results are provided and show the effects of several system parameters, such as the parameters of nonlinear HPA, cardinality of the beamforming weight vector codebook, and modulation order of quadrature amplitude modulation (QAM), on performance.
Resumo:
Nonlinearity of high-power amplifier (HPA) plays a crucial role in the performance of multiple-input multiple-output (MIMO) systems. In this paper, we investigate the performance of MIMO orthogonal space-time block coding (STBC) systems in the presence of nonlinear HPA. Specifically, we assess the impact of HPA nonlinearity on the average symbol error probability (SEP), total degradation (TD), and system capacity of orthogonal STBC in uncorrelated Nakagami-m fading channels. Numerical results are provided and show the effects of several system parameters, such as the output back-off (OBO) of nonlinear HPA, numbers of transmit and receive antennas, and modulation order of quadrature amplitude modulation (QAM), on performance.
Resumo:
Most of the operational Sea Surface Temperature (SST) products derived from satellite infrared radiometry use multi-spectral algorithms. They show, in general, reasonable performances with root mean square (RMS) residuals around 0.5 K when validated against buoy measurements, but have limitations, particularly a component of the retrieval error that relates to such algorithms' limited ability to cope with the full variability of atmospheric absorption and emission. We propose to use forecast atmospheric profiles and a radiative transfer model to simulate the algorithmic errors of multi-spectral algorithms. In the practical case of SST derived from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard Meteosat Second Generation (MSG), we demonstrate that simulated algorithmic errors do explain a significant component of the actual errors observed for the non linear (NL) split window algorithm in operational use at the Centre de Météorologie Spatiale (CMS). The simulated errors, used as correction terms, reduce significantly the regional biases of the NL algorithm as well as the standard deviation of the differences with drifting buoy measurements. The availability of atmospheric profiles associated with observed satellite-buoy differences allows us to analyze the origins of the main algorithmic errors observed in the SEVIRI field of view: a negative bias in the inter-tropical zone, and a mid-latitude positive bias. We demonstrate how these errors are explained by the sensitivity of observed brightness temperatures to the vertical distribution of water vapour, propagated through the SST retrieval algorithm.
Resumo:
A new sparse kernel density estimator is introduced based on the minimum integrated square error criterion for the finite mixture model. Since the constraint on the mixing coefficients of the finite mixture model is on the multinomial manifold, we use the well-known Riemannian trust-region (RTR) algorithm for solving this problem. The first- and second-order Riemannian geometry of the multinomial manifold are derived and utilized in the RTR algorithm. Numerical examples are employed to demonstrate that the proposed approach is effective in constructing sparse kernel density estimators with an accuracy competitive with those of existing kernel density estimators.
Resumo:
A new class of parameter estimation algorithms is introduced for Gaussian process regression (GPR) models. It is shown that the integration of the GPR model with probability distance measures of (i) the integrated square error and (ii) Kullback–Leibler (K–L) divergence are analytically tractable. An efficient coordinate descent algorithm is proposed to iteratively estimate the kernel width using golden section search which includes a fast gradient descent algorithm as an inner loop to estimate the noise variance. Numerical examples are included to demonstrate the effectiveness of the new identification approaches.
Resumo:
We systematically compare the performance of ETKF-4DVAR, 4DVAR-BEN and 4DENVAR with respect to two traditional methods (4DVAR and ETKF) and an ensemble transform Kalman smoother (ETKS) on the Lorenz 1963 model. We specifically investigated this performance with increasing nonlinearity and using a quasi-static variational assimilation algorithm as a comparison. Using the analysis root mean square error (RMSE) as a metric, these methods have been compared considering (1) assimilation window length and observation interval size and (2) ensemble size to investigate the influence of hybrid background error covariance matrices and nonlinearity on the performance of the methods. For short assimilation windows with close to linear dynamics, it has been shown that all hybrid methods show an improvement in RMSE compared to the traditional methods. For long assimilation window lengths in which nonlinear dynamics are substantial, the variational framework can have diffculties fnding the global minimum of the cost function, so we explore a quasi-static variational assimilation (QSVA) framework. Of the hybrid methods, it is seen that under certain parameters, hybrid methods which do not use a climatological background error covariance do not need QSVA to perform accurately. Generally, results show that the ETKS and hybrid methods that do not use a climatological background error covariance matrix with QSVA outperform all other methods due to the full flow dependency of the background error covariance matrix which also allows for the most nonlinearity.
Resumo:
In this paper, we investigate half-duplex two-way dual-hop channel state information (CSI)-assisted amplify-and-forward (AF) relaying in the presence of high-power amplifier (HPA) nonlinearity at relays. The expression for the end-to-end signal-to-noise ratio (SNR) is derived as per the modified system model by taking into account the interference caused by relaying scheme and HPA nonlinearity. The system performance of the considered relaying network is evaluated in terms of average symbol error probability (SEP) in Nakagami-$m$ fading channels, by making use of the moment-generating function (MGF) approach. Numerical results are provided and show the effects of several parameters, such as quadrature amplitude modulation (QAM) order, number of relays, HPA parameters, and Nakagami parameter, on performance.
Resumo:
Optimal state estimation is a method that requires minimising a weighted, nonlinear, least-squares objective function in order to obtain the best estimate of the current state of a dynamical system. Often the minimisation is non-trivial due to the large scale of the problem, the relative sparsity of the observations and the nonlinearity of the objective function. To simplify the problem the solution is often found via a sequence of linearised objective functions. The condition number of the Hessian of the linearised problem is an important indicator of the convergence rate of the minimisation and the expected accuracy of the solution. In the standard formulation the convergence is slow, indicating an ill-conditioned objective function. A transformation to different variables is often used to ameliorate the conditioning of the Hessian by changing, or preconditioning, the Hessian. There is only sparse information in the literature for describing the causes of ill-conditioning of the optimal state estimation problem and explaining the effect of preconditioning on the condition number. This paper derives descriptive theoretical bounds on the condition number of both the unpreconditioned and preconditioned system in order to better understand the conditioning of the problem. We use these bounds to explain why the standard objective function is often ill-conditioned and why a standard preconditioning reduces the condition number. We also use the bounds on the preconditioned Hessian to understand the main factors that affect the conditioning of the system. We illustrate the results with simple numerical experiments.
Resumo:
A new sparse kernel density estimator is introduced based on the minimum integrated square error criterion combining local component analysis for the finite mixture model. We start with a Parzen window estimator which has the Gaussian kernels with a common covariance matrix, the local component analysis is initially applied to find the covariance matrix using expectation maximization algorithm. Since the constraint on the mixing coefficients of a finite mixture model is on the multinomial manifold, we then use the well-known Riemannian trust-region algorithm to find the set of sparse mixing coefficients. The first and second order Riemannian geometry of the multinomial manifold are utilized in the Riemannian trust-region algorithm. Numerical examples are employed to demonstrate that the proposed approach is effective in constructing sparse kernel density estimators with competitive accuracy to existing kernel density estimators.
Resumo:
Nesse artigo, tem-se o interesse em avaliar diferentes estratégias de estimação de parâmetros para um modelo de regressão linear múltipla. Para a estimação dos parâmetros do modelo foram utilizados dados de um ensaio clínico em que o interesse foi verificar se o ensaio mecânico da propriedade de força máxima (EM-FM) está associada com a massa femoral, com o diâmetro femoral e com o grupo experimental de ratas ovariectomizadas da raça Rattus norvegicus albinus, variedade Wistar. Para a estimação dos parâmetros do modelo serão comparadas três metodologias: a metodologia clássica, baseada no método dos mínimos quadrados; a metodologia Bayesiana, baseada no teorema de Bayes; e o método Bootstrap, baseado em processos de reamostragem.
Resumo:
The recent advances in CMOS technology have allowed for the fabrication of transistors with submicronic dimensions, making possible the integration of tens of millions devices in a single chip that can be used to build very complex electronic systems. Such increase in complexity of designs has originated a need for more efficient verification tools that could incorporate more appropriate physical and computational models. Timing verification targets at determining whether the timing constraints imposed to the design may be satisfied or not. It can be performed by using circuit simulation or by timing analysis. Although simulation tends to furnish the most accurate estimates, it presents the drawback of being stimuli dependent. Hence, in order to ensure that the critical situation is taken into account, one must exercise all possible input patterns. Obviously, this is not possible to accomplish due to the high complexity of current designs. To circumvent this problem, designers must rely on timing analysis. Timing analysis is an input-independent verification approach that models each combinational block of a circuit as a direct acyclic graph, which is used to estimate the critical delay. First timing analysis tools used only the circuit topology information to estimate circuit delay, thus being referred to as topological timing analyzers. However, such method may result in too pessimistic delay estimates, since the longest paths in the graph may not be able to propagate a transition, that is, may be false. Functional timing analysis, in turn, considers not only circuit topology, but also the temporal and functional relations between circuit elements. Functional timing analysis tools may differ by three aspects: the set of sensitization conditions necessary to declare a path as sensitizable (i.e., the so-called path sensitization criterion), the number of paths simultaneously handled and the method used to determine whether sensitization conditions are satisfiable or not. Currently, the two most efficient approaches test the sensitizability of entire sets of paths at a time: one is based on automatic test pattern generation (ATPG) techniques and the other translates the timing analysis problem into a satisfiability (SAT) problem. Although timing analysis has been exhaustively studied in the last fifteen years, some specific topics have not received the required attention yet. One such topic is the applicability of functional timing analysis to circuits containing complex gates. This is the basic concern of this thesis. In addition, and as a necessary step to settle the scenario, a detailed and systematic study on functional timing analysis is also presented.
Resumo:
Introduction. Leaf area is often related to plant growth, development, physiology and yield. Many non-destructive models have been proposed for leaf area estimation of several plant genotypes, demonstrating that leaf length, leaf width and leaf area are closely correlated. Thus, the objective of our study was to develop a reliable model for leaf area estimation from linear measurements of leaf dimensions for citrus genotypes. Materials and methods. Leaves of citrus genotypes were harvested, and their dimensions (length, width and area) were measured. Values of leaf area were regressed against length, width, the square of length, the square of width and the product (length x width). The most accurate equations, either linear or second-order polynomial, were regressed again with a new data set; then the most reliable equation was defined. Results and discussion. The first analysis showed that the variables length, width and the square of length gave better results in second-order polynomial equations, while the linear equations were more suitable and accurate when the width and the product (length x width) were used. When these equations were regressed with the new data set, the coefficient of determination (R(2)) and the agreement index 'd' were higher for the one that used the variable product (length x width), while the Mean Absolute Percentage Error was lower. Conclusion. The product of the simple leaf dimensions (length x width) can provide a reliable and simple non-destructive model for leaf area estimation across citrus genotypes.
Resumo:
Objetivou-se com este trabalho avaliar a produção fecal por meio do indicador interno, fibra em detergente neutro indigestível (FDNi), e externos, cromo complexado com ácido etilenodiaminotetracético (Cr-EDTA ) e o cloreto de itérbio (YbCl3), além de estimar o fluxo duodenal da matéria seca e os coeficientes de digestibilidades aparentes total, ruminal e pós-ruminal, de diferentes nutrientes. Foram utilizadas oito novilhas mestiças Holandês/Zebu, distribuídas em duplo quadrado latino 4 x 4. Os indicadores Cr-EDTA, YbCl3 e o FDNi não estimaram produção fecal de forma eficiente (p < 0,05), obtendo resultado de 1,64; 1,71 e 2,71 kg dia-1, respectivamente, quando comparado à coleta total de fezes, que obteve resultado de 1,39 kg dia-1. Os valores estimados de fluxo de matéria seca, tanto para a metodologia de único, quanto para de duplo indicador, podem ser considerados biologicamente aceitáveis. Contudo, o valor obtido pela associação Cr-EDTA/YbCl3, utilizada na forma de duplo indicador, foi o mais confiável, pela melhor recuperação dos indicadores externos (Cr-EDTA e YbCl3), que obtiveram médias de 89 e 85%, respectivamente, em comparação ao interno (FDNi), que obteve média 67%. Os coeficientes de digestibilidade ruminal e pós ruminal, estimados pela associação Cr-EDTA/YbCl3, foram considerados melhores, em consequência do valor de fluxo de matéria seca estimado por esta associação.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Critical limits of a stationary nonlinear three-dimensional Schrodinger equation with confining power-law potentials (similar to r(alpha)) are obtained using spherical symmetry. When the nonlinearity is given by an attractive two-body interaction (negative cubic term), it is shown how the maximum number of particles N-c in the trap increases as alpha decreases. With a negative cubic and positive quintic terms we study a first order phase transition, that occurs if the strength g(3) of the quintic term is less than a critical value g(3c). At the phase transition, the behavior of g(3c) with respect to alpha is given by g(3c)similar to 0.0036+0.0251/alpha+0.0088/alpha(2).