979 resultados para Spray drift
Resumo:
The tendency for public welfare spending to be increasingly aimed at the elderly has been pointed out for the US and other developed countries. While population ageing is a common trend, it is not obvious why the shift in spending exceeds the trend in ageing, or why per capita spending on the elderly increases.We show that this is the case in Spain, identify the losers from this development, discuss the policies that underlie this trend, and propose adjustments based on Musgrave s fixed proportions rule as an inter-generationally fair distribution.
Resumo:
This study represents the most extensive analysis of batch-to-batch variations in spray paint samples to date. The survey was performed as a collaborative project of the ENFSI (European Network of Forensic Science Institutes) Paint and Glass Working Group (EPG) and involved 11 laboratories. Several studies have already shown that paint samples of similar color but from different manufacturers can usually be differentiated using an appropriate analytical sequence. The discrimination of paints from the same manufacturer and color (batch-to-batch variations) is of great interest and these data are seldom found in the literature. This survey concerns the analysis of batches from different color groups (white, papaya (special shade of orange), red and black) with a wide range of analytical techniques and leads to the following conclusions. Colored batch samples are more likely to be differentiated since their pigment composition is more complex (pigment mixtures, added pigments) and therefore subject to variations. These variations may occur during the paint production but may also occur when checking the paint shade in quality control processes. For these samples, techniques aimed at color/pigment(s) characterization (optical microscopy, microspectrophotometry (MSP), Raman spectroscopy) provide better discrimination than techniques aimed at the organic (binder) or inorganic composition (fourier transform infrared spectroscopy (FTIR) or elemental analysis (SEM - scanning electron microscopy and XRF - X-ray fluorescence)). White samples contain mainly titanium dioxide as a pigment and the main differentiation is based on the binder composition (Csingle bondH stretches) detected either by FTIR or Raman. The inorganic composition (elemental analysis) also provides some discrimination. Black samples contain mainly carbon black as a pigment and are problematic with most of the spectroscopic techniques. In this case, pyrolysis-GC/MS represents the best technique to detect differences. Globally, Py-GC/MS may show a high potential of discrimination on all samples but the results are highly dependent on the specific instrumental conditions used. Finally, the discrimination of samples when data was interpreted visually as compared to statistically using principal component analysis (PCA) yielded very similar results. PCA increases sensitivity and could perform better on specific samples, but one first has to ensure that all non-informative variation (baseline deviation) is eliminated by applying correct pre-treatments. Statistical treatments can be used on a large data set and, when combined with an expert's opinion, will provide more objective criteria for decision making.
Resumo:
Many traits and/or strategies expressed by organisms are quantitative phenotypes. Because populations are of finite size and genomes are subject to mutations, these continuously varying phenotypes are under the joint pressure of mutation, natural selection and random genetic drift. This article derives the stationary distribution for such a phenotype under a mutation-selection-drift balance in a class-structured population allowing for demographically varying class sizes and/or changing environmental conditions. The salient feature of the stationary distribution is that it can be entirely characterized in terms of the average size of the gene pool and Hamilton's inclusive fitness effect. The exploration of the phenotypic space varies exponentially with the cumulative inclusive fitness effect over state space, which determines an adaptive landscape. The peaks of the landscapes are those phenotypes that are candidate evolutionary stable strategies and can be determined by standard phenotypic selection gradient methods (e.g. evolutionary game theory, kin selection theory, adaptive dynamics). The curvature of the stationary distribution provides a measure of the stability by convergence of candidate evolutionary stable strategies, and it is evaluated explicitly for two biological scenarios: first, a coordination game, which illustrates that, for a multipeaked adaptive landscape, stochastically stable strategies can be singled out by letting the size of the gene pool grow large; second, a sex-allocation game for diploids and haplo-diploids, which suggests that the equilibrium sex ratio follows a Beta distribution with parameters depending on the features of the genetic system.
Resumo:
Leakage detection is an important issue in many chemical sensing applications. Leakage detection hy thresholds suffers from important drawbacks when sensors have serious drifts or they are affected by cross-sensitivities. Here we present an adaptive method based in a Dynamic Principal Component Analysis that models the relationships between the sensors in the may. In normal conditions a certain variance distribution characterizes sensor signals. However, in the presence of a new source of variance the PCA decomposition changes drastically. In order to prevent the influence of sensor drifts the model is adaptive and it is calculated in a recursive manner with minimum computational effort. The behavior of this technique is studied with synthetic signals and with real signals arising by oil vapor leakages in an air compressor. Results clearly demonstrate the efficiency of the proposed method.
Resumo:
Drift is an important issue that impairs the reliability of gas sensing systems. Sensor aging, memory effects and environmental disturbances produce shifts in sensor responses that make initial statistical models for gas or odor recognition useless after a relatively short period (typically few weeks). Frequent recalibrations are needed to preserve system accuracy. However, when recalibrations involve numerous samples they become expensive and laborious. An interesting and lower cost alternative is drift counteraction by signal processing techniques. Orthogonal Signal Correction (OSC) is proposed for drift compensation in chemical sensor arrays. The performance of OSC is also compared with Component Correction (CC). A simple classification algorithm has been employed for assessing the performance of the algorithms on a dataset composed by measurements of three analytes using an array of seventeen conductive polymer gas sensors over a ten month period.
Resumo:
A new drift compensation method based on Common Principal Component Analysis (CPCA) is proposed. The drift variance in data is found as the principal components computed by CPCA. This method finds components that are common for all gasses in feature space. The method is compared in classification task with respect to the other approaches published where the drift direction is estimated through a Principal Component Analysis (PCA) of a reference gas. The proposed new method ¿ employing no specific reference gas, but information from all gases ¿has shown the same performance as the traditional approach with the best-fitted reference gas. Results are shown with data lasting 7-months including three gases at different concentrations for an array of 17 polymeric sensors.
Resumo:
This manual summarizes the roadside tree and brush control methods used by all of Iowa's 99 counties. It is based on interviews conducted in Spring 2002 with county engineers, roadside managers and others. The target audience of this manual is the novice county engineer or roadside manager. Iowa law is nearly silent on roadside tree and brush control, so individual counties have been left to decide on the level of control they want to achieve and maintain. Different solutions have been developed but the goal of every county remains the same: to provide safe roads for the traveling public. Counties in eastern and southern Iowa appear to face the greatest brush control challenge. Most control efforts can be divided into two categories: mechanical and chemical. Mechanical control includes cutting tools and supporting equipment. A chain saw is the most widely used cutting tool. Tractor mounted boom mowers and brush cutters are used to prune miles of brush but have significant safety and aesthetic limitations and boom mowers are easily broken by inexperienced operators. The advent of tree shears and hydraulic thumbs offer unprecedented versatility. Bulldozers are often considered a method of last resort since they reduce large areas to bare ground. Any chipper that violently grabs brush should not be used. Chemical control is the application of herbicide to different parts of a plant: foliar spray is applied to leaves; basal bark spray is applied to the tree trunk; a cut stump treatment is applied to the cambium ring of a cut surface. There is reluctance by many to apply herbicide into the air due to drift concerns. One-third of Iowa counties do not use foliar spray. By contrast, several accepted control methods are directed toward the ground. Freshly cut stumps should be treated to prevent resprouting. Basal bark spray is highly effective in sensitive areas such as near houses. Interest in chemical control is slowly increasing as herbicides and application methods are refined. Fall burning, a third, distinctly separate technique is underused as a brush control method and can be effective if timed correctly. In all, control methods tend to reflect agricultural patterns in a county. The use of chain saws and foliar sprays tends to increase in counties where row crops predominate, and boom mowing tends to increase in counties where grassland predominates. For counties with light to moderate roadside brush, rotational maintenance is the key to effective control. The most comprehensive approach to control is to implement an integrated roadside vegetation management (IRVM) program. An IRVM program is usually directed by a Roadside Manager whose duties may be shared with another position. Funding for control programs comes from the Rural Services Basic portion of a county's budget. The average annual county brush control budget is about $76,000. That figure is thought not to include shared expenses such as fuel and buildings. Start up costs for an IRVM program are less if an existing control program is converted. In addition, IRVM budgets from three different northeastern Iowa counties are offered for comparison in this manual. The manual also includes a chapter on temporary traffic control in rural work zones, a summary of the Iowa Code as it relates to brush control, and rules on avoiding seasonal disturbance of the endangered Indiana bat. Appendices summarize survey and forest cover data, an equipment inventory, sample forms for record keeping, a sample brush control policy, a few legal opinions, a literature search, and a glossary.
Resumo:
Measurements and simulations were performed to assess workers' exposure to solvent vapors and aerosols during the waterproofing of a tiled surface. This investigation followed two recent incidents in the same company where workers experienced acute respiratory illness after spraying a stain-repellent resin containing fluorinated polymers on stone-tiled walls and floors. Because the waterproofing activity had been done for years at the tile company without encountering any exposure problems prior to these cases, it was strongly suspected that the incidents were linked to a recent change in the composition of the coating mixture. Experimental measurements and simulations indicated that the emission rate of particles smaller than 10 microm may be estimated at 0.66 mg/sec (SD 0.10) for the old resin and at 0.37 mg/sec (SD 0.04) for the new one. The measurement of the solvent emission rate from surfaces coated with the two resins indicated that shortly after spraying, the emission was in the range of 18 to 20 mg/sec x m2 and was similar for both products. Solvent and overspray emission rates were introduced in a two-zone compartment model. The results obtained in the near-field indicate significant exposure to overspray mist (7 and 34 mg/m3 for new resin) and solvent vapors (80 to 350 ppm for the new resin). It was also shown that the introduction of the new resin tended to significantly decrease the levels of solvents and particulates in the workers' breathing zone. These results strongly suggest that cases of acute respiratory illness are related to the specific toxicity of the fluorinated polymer itself. The fact that the same polymer is used in various commercial products raises concern regarding other possible occupational and domestic exposures.
Resumo:
An effect of drift is investigated on the segregation pattern in diffusion-limited aggregation (DLA) with two components (A and B species). The sticking probability PAB (=PBA) between the different species is introduced into the DLA model with drift, where the sticking probability PAA (=PBB) between the same species equals 1. By using computer simulation it is found that the drift has an important effect on not only the morphology but also the segregation pattern. Under the drift and the small sticking probability, a characteristic pattern appears where elongated clusters of A species and of B species are periodically dispersed. The period decreases with increasing drift. The periodic structure of the deposits is characterized by an autocorrelation function. The shape of the cluster consisting of only A species (or B species) shows a vertically elongated filamentlike structure. Each cluster becomes vertically longer with decreasing sticking probability PAB. The segregation pattern is distinctly different from that with no drift and a small sticking probability PAA. The effect of the concentration on the segregation pattern is also shown.