93 resultados para Spheroids


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biomedicine is a highly interdisciplinary research area at the interface of sciences, anatomy, physiology, and medicine. In the last decade, biomedical studies have been greatly enhanced by the introduction of new technologies and techniques for automated quantitative imaging, thus considerably advancing the possibility to investigate biological phenomena through image analysis. However, the effectiveness of this interdisciplinary approach is bounded by the limited knowledge that a biologist and a computer scientist, by professional training, have of each other’s fields. The possible solution to make up for both these lacks lies in training biologists to make them interdisciplinary researchers able to develop dedicated image processing and analysis tools by exploiting a content-aware approach. The aim of this Thesis is to show the effectiveness of a content-aware approach to automated quantitative imaging, by its application to different biomedical studies, with the secondary desirable purpose of motivating researchers to invest in interdisciplinarity. Such content-aware approach has been applied firstly to the phenomization of tumour cell response to stress by confocal fluorescent imaging, and secondly, to the texture analysis of trabecular bone microarchitecture in micro-CT scans. Third, this approach served the characterization of new 3-D multicellular spheroids of human stem cells, and the investigation of the role of the Nogo-A protein in tooth innervation. Finally, the content-aware approach also prompted to the development of two novel methods for local image analysis and colocalization quantification. In conclusion, the content-aware approach has proved its benefit through building new approaches that have improved the quality of image analysis, strengthening the statistical significance to allow unveiling biological phenomena. Hopefully, this Thesis will contribute to inspire researchers to striving hard for pursuing interdisciplinarity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bone disorders have severe impact on body functions and quality life, and no satisfying therapies exist yet. The current models for bone disease study are scarcely predictive and the options existing for therapy fail for complex systems. To mimic and/or restore bone, 3D printing/bioprinting allows the creation of 3D structures with different materials compositions, properties, and designs. In this study, 3D printing/bioprinting has been explored for (i) 3D in vitro tumor models and (ii) regenerative medicine. Tumor models have been developed by investigating different bioinks (i.e., alginate, modified gelatin) enriched by hydroxyapatite nanoparticles to increase printing fidelity and increase biomimicry level, thus mimicking the organic and inorganic phase of bone. High Saos-2 cell viability was obtained, and the promotion of spheroids clusters as occurring in vivo was observed. To develop new syntethic bone grafts, two approaches have been explored. In the first, novel magnesium-phosphate scaffolds have been investigated by extrusion-based 3D printing for spinal fusion. 3D printing process and parameters have been optimized to obtain custom-shaped structures, with competent mechanical properties. The 3D printed structures have been combined to alginate porous structures created by a novel ice-templating technique, to be loaded by antibiotic drug to address infection prevention. Promising results in terms of planktonic growth inhibition was obtained. In the second strategy, marine waste precursors have been considered for the conversion in biogenic HA by using a mild-wet conversion method with different parameters. The HA/carbonate ratio conversion efficacy was analysed for each precursor (by FTIR and SEM), and the best conditions were combined to alginate to develop a composite structure. The composite paste was successfully employed in custom-modified 3D printer for the obtainment of 3D printed stable scaffolds. In conclusion, the osteomimetic materials developed in this study for bone models and synthetic grafts are promising in bone field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis explores the advancement of cancer treatment through targeted photodynamic therapy (PDT) using bioengineered phages. It aims to harness the specificity of phages for targeting cancer-related receptors such as EGFR and HER2, which are pivotal in numerous malignancies and associated with poor outcomes. The study commenced with the M13EGFR phage, modified to target EGFR through pIII-displayed EGFR-binding peptides, demonstrating enhanced killing efficiency when conjugated with the Rose Bengal photosensitizer. This phase underscored phages' potential in targeted PDT. A breakthrough was achieved with the development of the M137D12 phage, engineered to display the 7D12 nanobody for precise EGFR targeting, marking a shift from peptide-based to nanobody-based targeting and yielding better specificity and therapeutic results. The translational potential was highlighted through in vitro and in vivo assays employing therapeutic lasers, showing effective, specific cancer cell killing through a necrotic mechanism. Additionally, the research delved into the interaction between the M13CC phage and colon cancer models, demonstrating its ability to penetrate and disrupt cancer spheroids only upon irradiation, indicating a significant advancement in targeting cells within challenging tumor microenvironments. In summary, the thesis provides a thorough examination of the phage platform's efficacy and versatility for targeted PDT. The promising outcomes, especially with the M137D12 phage, and initial findings on a HER2-targeting phage (M13HER2), forecast a promising future for phage-mediated, targeted anticancer strategies employing photosensitizers in PDT.