922 resultados para Spermatogenesis in animals
Resumo:
NOTCH1 is a member of the NOTCH receptor family, a group of single-pass trans-membrane receptors. NOTCH signaling is highly conserved in evolution and mediates communication between adjacent cells. NOTCH receptors have been implicated in cell fate determination, as well as maintenance and differentiation of stem cells. In the mammalian testis expression of NOTCH1 in somatic and germ cells has been demonstrated, however its role in spermatogenesis was not clear. To study the significance of NOTCH1 in germ cells, we applied a cre/loxP approach in mice to induce NOTCH1 gain- or loss-of function specifically in male germ cells. Using a Stra8-icretransgene we produced mice with conditional activation of the NOTCH1 intracellular domain (NICD) in germ cells. Spermatogenesis in these mutants was progressively affected with age, resulting in decreased testis weight and sperm count. Analysis of downstream target genes of NOTCH1 signaling showed an increased expression of Hes5, with a reduction of the spermatogonial differentiation marker, Neurog3 expression in the mutant testis. Apoptosis was significantly increased in mouse germ cells with the corresponding elevation of pro-apoptotic Trp53 and Trp63genes' expression. We also showed that the conditional germ cell-specific ablation of Notch1 had no effect on spermatogenesis or male fertility. Our data suggest the importance of NOTCH signaling regulation in male germ cells for their survival and differentiation.
Resumo:
The bullfrog (Lithobates catesbeianus) has substantial economic importance and has also been used as an experimental model for biological studies in the fields of pharmcology, medicine, and reproductive biology, especially studies addressing gametogenesis. However, there is a lack of comprehensive information in the literature regarding testis structure and function in this amphibian. The main objective of the current study was to estimate the duration of the various phases of spermatogenesis in this vertebrate. Sixteen sexually mature bullfrogs received an intracoelomic administration of tritiated thymidine. Testes were analyzed at various times between I h and 33 d after administration to detect the most advanced germ cell types labeled at each interval, as well as labeled preleptotene spermatocytes, which presumably originated from spermatogonial stem cells. The duration of the spermatogonial, spermatocytic, and spermiogenic phases of spermatogenesis in the bullfrog were approximately 18, 14, and 8 d, respectively. Thus, the total duration of the spermatogenesis process from early spermatogonia through to spermatozoa was 40 d in this species, similar to that of most previously investigated mammalian species. To our knowledge, this is the first reliable report on the duration of the full spermatogenic process in any amphibian species. These findings will be very useful for tracking the pace of germ cells in studies involving spermatogonial transplantation in lower vertebrates. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The objective of this study was to determine the dynamics and diversity of Escherichia coli populations in animal and environmental lines of a commercial farrow-to-finish pig farm in Spain along a full production cycle (July 2008 to July 2009), with special attention to antimicrobial resistance and the presence of integrons. In the animal line, a total of 256 isolates were collected from pregnant sows (10 samples and 20 isolates), 1-week-old piglets (20 samples and 40 isolates), unweaned piglets (20 samples and 38 isolates), growers (20 samples and 40 isolates), and the finishers' floor pen (6 samples and 118 isolates); from the underfloor pits and farm slurry tank environmental lines, 100 and 119 isolates, respectively, were collected. Our results showed that E. coli populations in the pig fecal microbiota and in the farm environment are highly dynamic and show high levels of diversity. These issues have been proven through DNA-based typing data (repetitive extragenic palindromic PCR [REP-PCR]) and phenotypic typing data (antimicrobial resistance profile comprising 19 antimicrobials). Clustering of the sampling groups based on their REP-PCR typing results showed that the spatial features (the line) had a stronger weight than the temporal features (sampling week) for the clustering of E. coli populations; this weight was less significant when clustering was performed based on resistotypes. Among animals, finishers harbored an E. coli population different from those of the remaining animal populations studied, considering REP-PCR fingerprints and resistotypes. This population, the most important from a public health perspective, demonstrated the lowest levels of antimicrobial resistance and integron presence.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Genética - IBILCE
Resumo:
Pós-graduação em Genética - IBILCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência e Tecnologia Animal - FEIS
Resumo:
Vol. 3-5, "Auf grund des nachlasses fortgeführt von A.A.W. Hubrecht ... H. Strahl ... und F. Keibel."
Resumo:
The RNA helicase Vasa is a germ cell marker in animals, and its homolog in vertebrates to date has been limited to bisexual reproduction. We cloned and characterized CagVasa, a Vasa homolog from the gibel carp, a fish that reproduces bisexually or gynogenetically. CagVasa possesses 14 RGG repeats and eight conserved motifs of Vasa proteins. In bisexually reproducing gibel carp, vasa is maternally supplied and its zygotic expression is restricted to gonads. By in situ hybridization on testicular sections, vasa is low in spermatogonia, high in primary spermatocytes, reduced in secondary spermatocytes, but disappears in spermatids and sperm. In contrast, vasa persists throughout oogenesis, displaying low-high-low levels from oogonia over vitellogenic oocytes to maturing oocytes. A rabbit anti-Vasa antibody (alpha Vasa) was raised against the N-terminal CagVasa for fluorescent immunohistochemistry. On testicular sections, Vasa is the highest in spermatogonia, reduced in spermatocytes, low in spermatids, and absent in sperm. In the ovary, Vasa is the highest in oogonia but persists throughout oogenesis. Subcellular localization of vasa and its protein changes dynamically during oogenesis. The aVasa stains putative primordial germ cells in gibel carp fry. It detects gonadal germ cells also in several other teleosts. Therefore, Cagvasa encodes a Vasa ortholog that is differentially expressed in the testis and ovary. Interestingly, the alpha Vasa in combination with a nuclear dye can differentiate critical stages of spermatogenesis and oogenesis in fish. The cross-reactivity and the ability to stain stage-specific germ cells make this antibody a useful tool to identify fish germ cell development and differentiation. (c) 2005 Wiley-Liss, Inc.
Resumo:
Although there are almost thirty-thousand species of fish living in a great variety of habitats and utilizing vast reproductive strategies, our knowledge of morphofunctional and quantitative aspects of testis structure and spermatogenesis is still incipient for this group of vertebrates. In this review, we discuss aspects that are important to better understanding of testis structure and function, and of the development of germ cells (GC) during spermatogenesis. To achieve this, we have recently completed a number of studies presenting morphometric and functional data related to the numbers of GC and Sertoli cells (SC) per each type of spermatogenic cyst, the number of spermatogonial generations, the SC efficiency, and the magnitude of GC loss that normally occurs during spermatogenesis. We also investigated SC proliferation and the relationship of this important event to early spermatogenic cysts. The available data strongly suggest that SC proliferation in sexually mature tilapia is the primary factor responsible for the increase in testis size and for determination of the magnitude of sperm production. The influence of temperature on the duration of spermatogenesis in tilapia was also evaluated and we have used this knowledge to deplete endogenous spermatogenesis in this teleost, in order to develop an experimental system for GC transplantation. This exciting technique results in new possibilities for investigation of spermatogenesis and spermatogonial stem cell biology, creating also an entirely new and promising scenario in biotechnology - transgenic animal production and the preservation of the genetic stocks of valuable animals or endangered species. © Springer Science+Business Media B.V. 2008.
Resumo:
Although the fisheries for, and mariculture of, penaeid prawns are of major commercial importance, there has been relatively little research undertaken on the chromosome number, structure and composition in the Penaeidae. One reason for this is due to the relatively small size and large number of chromosomes, which makes production of histological material difficult. In this paper, we report a simple and effective technique for determining chromosome complements during spermatogenesis in two species of penaeid prawns, Penaeus merguiensis and P. esculentus in Australia. The first estimates of the number of chromosomes in these species are given.
Resumo:
The response of cattle to alterations in social groupings can lead to physiological changes that affect meat quality. Feedlot practices frequently lead to a proportion of cattle in a pen being drafted for slaughter with the balance retained for a further period until they meet market specifications. An ability to regroup such retained cattle for short periods without consequences for meat quality would facilitate efficient use of feedlot pen space. The current experiment examined the impact on physiological variables and meat quality of regrouped British breed steers 4, 2 or 1 week before dispatch for slaughter. There was little effect of regrouping cattle on physiological variables associated with stress responses. Physical assessment of meat quality indicated that regrouping steers 1 week before slaughter led to higher compression and a tendency for higher peak force values in animals from one genotype than in their respective controls (1.89 v. 1.71 ± 0.05 kg, P = 0.017); however, these assessments were not matched by changes in sensory perception of meat quality. Average daily gain during feedlot finishing was negatively related to the temperament measure and flight time. It was also associated with breed, white cell count, plasma cortisol and haemoglobin at the midpoint of the 70-day finishing period. The results confirm the impact of flight time on growth rate during feedlot finishing and that regrouping cattle less than 2 weeks before slaughter may reduce meat quality.
Resumo:
A total of 8 calves approximately 6 months old and 22 lambs of similar age were infected with metacercariae of Fasciola hepatica of various laboratory-maintained isolates including: Cullompton (sensitive to triclabendazole) and Sligo, Oberon and Leon (reported as resistant to triclabendazole). Ten to 16 weeks after infection, flukes were harvested from these experimental animals and the histology of the testis tissue was examined in a representative sample of flukes from each population. Adult wild-type flukes were also collected from 5 chronically infected cattle and 7 chronically infected sheep identified at post-mortem inspection. The testis tissue of these flukes was compared with that of the various laboratory-maintained isolates. Whilst the testes of the wild-type, Oberon and Leon flukes displayed all the usual cell types associated with spermatogenesis in Fasciola hepatica (spermatogonia, spermatocytes, spermatids and mature sperm), the Cullompton flukes from both cattle and sheep showed arrested spermatogenesis, with no stages later than primary spermatocytes represented in the testis profiles. The presence of numerous eosinophilic apoptotic bodies and nuclear fragments suggested that meiotic division was anomalous and incomplete. In contrast to the wild-type flukes, no mature spermatozoa were present in the testes or amongst the shelled eggs in the uterus. A high proportion of the eggs collected from these flukes hatched to release normal-appearing miracidia after an appropriate incubation period, as indeed was the case with all isolates examined and the wild-type flukes. It is concluded that the eggs of Cullompton flukes are capable of development without fertilization, i.e. are parthenogenetic. The implications of this for rapid evolution of resistant clones following an anthelmintic selection event are discussed. Amongst the Sligo flukes examined, two subtypes were recognised, namely, those flukes with all stages of spermatogenesis and mature spermatozoa present in the testes (type 1), and those flukes with all stages of spermatogenesis up to spermatids present, but no maturing spermatozoa in the testes (type 2). Each sheep infected with the Sligo isolate had both type 1 (approximately 60%) and type 2 (approximately 40%) flukes present in the population. Spermatozoa were found amongst the eggs in the uterus in 64% of flukes and this did not necessarily reflect the occurrence of spermatozoa in the testis profiles of particular flukes, suggesting that cross-fertilization had occurred. The apparent disruption of meiosis in the spermatocytes of the Cullompton flukes is consistent with reports that Cullompton flukes are triploid (3n = 30), whereas the Sligo and wild-type flukes are diploid (2n = 20). In the Sligo flukes the populations are apparently genetically heterogenous, with a proportion of the flukes unable to produce fully formed spermatozoa perhaps because of a failure in spermiogenesis involving elongation of the nucleus during morphogenesis. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Sheep infected with the Cullompton isolate of Fasciola hepatica were treated with triclabendazole at a concentration of 10 mg/kg at 12 weeks post-infection. Adult flukes were recovered from the liver and, where present, from the gall bladder at 48, 72 and 96 h post-treatment (pt). Gross changes to the spermatogenic cells of the testis were examined by histology and ultrastructural alterations were visualised via transmission electron microscopy. Disruption was progressive in nature, with the testis tubules becoming shrunken, vacuolated and gradually more denuded of cellular content over the 96-h time period. From 48 h pt, the number of primary and secondary spermatogonia decreased and multinucleate spermatogonial cells were frequent. Later, developmental stages were uncommon, giving rise to much empty space within the tubules. By 72 h pt, the tubules contained many apoptotic and degraded cells and had an extremely disorganised appearance. At 96 h pt, the tubules were almost completely empty, with the exception of the remains of degraded spermatogenic cells. These results indicate that triclabendazole severely disrupts spermatogenesis in the liver fluke from 48 h pt in vivo.