973 resultados para Species availability
Resumo:
An investigation was made of the communities of gill monogene genus Dactylogyrus (Platyhelminthes, Monogenea) and the populations of blackspot parasite (Platyhelminthes, Trematoda) of Pimephales promelas, Notropis stramineus, and Semotilus atromaculatus in 3 distinct sites along the 3 converging tributaries in southeastern Nebraska from 2004 to 2006. This work constitutes the first multi-site, multi-year study of a complex community of Dactylogyrus spp. and their reproductive activities on native North American cyprinid species. The biological hypothesis that closely related species with direct lifecycles respond differently to shared environmental conditions was tested. It was revealed that in this system that, Cyprinid species do not share Dactylogyrus species, host size and sex are not predictive of infection, and Dactylogyrus community structure is stable, despite variation in seasonal occurrence and populations among sites. The biological hypothesis that closely related species have innate differences in reproductive activities that provide structure to their populations and influence their roles in the parasite community was tested. It was revealed that in this system, host size, sex, and collection site are not predictive of reproductive activities, that egg production is not always continuous and varies in duration among congeners, and that recruitment of larval Dactylogyrus is not continuous across parasites’ reproductive periods. Hatch timing and host availability, not reproductive timing, are the critical factors determining population dynamics of the gill monogenes in time and space. Lastly, the biological hypothesis that innate blackspot biology is responsible for parasite host-specificity, host recruitment strategies and parasite population structure was tested. Field collections revealed that for blackspot, host size, sex, and collection month and year are not predictive of infection, that parasite cysts survive winter, and that host movement is restricted among the 3 collection sites. Finally, experimental infections of hosts with cercaria isolated from 1st intermediate snail hosts reveal that cercarial biology, not environmental circumstances, are responsible for differences in infection among hosts.
Resumo:
Aquafeed production faces global issues related to availability of feed ingredients. Feed manufacturers require greater flexibility in order to develop nutritional and cost-effective formulations that take into account nutrient content and availability of ingredients. The search for appropriate ingredients requires detailed screening of their potential nutritional value and variability at the industrial level. In vitro digestion of feedstuffs by enzymes extracted from the target species has been correlated with apparent protein digestibility (APD) in fish and shrimp species. The present study verified the relationship between APD and in vitro degree of protein hydrolysis (DH) with Litopenaeus vannamei hepatopancreas enzymes in several different ingredients (n = 26): blood meals, casein, corn gluten meal, crab meal, distiller`s dried grains with solubles, feather meal, fish meals, gelatin, krill meals, poultry by-product meal, soybean meals, squid meals and wheat gluten. The relationship between APD and DH was further verified in diets formulated with these ingredients at 30% inclusion into a reference diet. APD was determined in vivo (30.1 +/- 0.5 degrees C, 32.2 +/- 0.4%.) with juvenile L vannamei (9 to 12 g) after placement of test ingredients into a reference diet (35 g kg(-1) CP: 8.03 g kg(-1) lipid; 2.01 kcal g(-1)) with chromic oxide as the inert marker. In vitro DH was assessed in ingredients and diets with standardized hepatopancreas enzymes extracted from pond-reared shrimp. The DH of ingredients was determined under different assay conditions to check for the most suitable in vitro protocol for APD prediction: different batches of enzyme extracts (HPf5 or HPf6), temperatures (25 or 30 degrees C) and enzyme activity (azocasein): crude protein ratios (4 U: 80 mg CP or 4 U: 40 mg CP). DH was not affected by ingredient proximate composition. APD was significantly correlated to DH in regressions considering either ingredients or diets. The relationships between APD and DH of the ingredients could be suitably adjusted to a Rational Function (y = (a + bx)/(1 + cx + dx2), n = 26. Best in vitro APD predictions were obtained at 25 degrees C, 4 U: 80 mg CP both for ingredients (R(2) = 0.86: P = 0.001) and test diets (R(2) = 0.96; P = 0.007). The regression model including all 26 ingredients generated higher prediction residuals (i.e., predicted APD - determined APD) for corn gluten meal, feather meal. poultry by-product meal and krill flour. The remaining test ingredients presented mean prediction residuals of 3.5 points. A model including only ingredients with APD>80% showed higher prediction precision (R(2) = 0.98: P = 0.000004; n = 20) with average residual of 1.8 points. Predictive models including only ingredients from the same origin (e.g., marine-based, R(2) = 0.98; P = 0.033) also displayed low residuals. Since in vitro techniques have been usually validated through regressions against in vivo APD, the DH predictive capacity may depend on the consistency of the in vivo methodology. Regressions between APD and DH suggested a close relationship between peptide bond breakage by hepatopancreas digestive proteases and the apparent nitrogen assimilation in shrimp, and this may be a useful tool to provide rapid nutritional information. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The availability of chemical elements for plants is mainly dependent on the nature of the soil and characteristics of each species. The transfer factors of lanthanides from the soil to the tree leaves of the Atlantic Forest, Brazil, were calculated for one fern species (Alsophila sternbergii-Pteridophyta division) and four magnoliophytes species (Bathysa australis, Euterpe edulis, Garcinia gardneriana and Guapira opposita-Magnoliophyta division) obtained in two areas of Serra do Mar State Park and collected in two different seasons. Samples were analyzed by instrumental neutron activation analysis (INAA). The soil-to-plant transfer factor (TF = C(plant):C(soil)) in magnoliophytes species was correlated to the mass fraction of lanthanides in the soil, described by a exponential model (TF = a.C (soil) (-b) ). Despite the tree fern Alsophila sternbergii presented a hyperaccumulation of lanthanides, this species did not have a significant relationship between TF and mass fraction in soil. Results indicated that plants of Magnoliophyta division selected the input of lanthanides from the soil, while the same was not observed in Alsophila sternbergii.
Resumo:
Introducing nitrogen-fixing tree species in fast-growing eucalypt plantations has the potential to improve soil nitrogen availability compared with eucalypt monocultures. Whether or not the changes in soil nutrient status and stand structure will lead to mixtures that out-yield monocultures depends on the balance between positive interactions and the negative effects of interspecific competition, and on their effect on carbon (C) uptake and partitioning. We used a C budget approach to quantify growth, C uptake and C partitioning in monocultures of Eucalyptus grandis (W. Hill ex Maiden) and Acacia mangium (Willd.) (treatments E100 and A100, respectively), and in a mixture at the same stocking density with the two species at a proportion of 1 : 1 (treatment MS). Allometric relationships established over the whole rotation, and measurements of soil CO2 efflux and aboveground litterfall for ages 4-6 years after planting were used to estimate aboveground net primary production (ANPP), total belowground carbon flux (TBCF) and gross primary production (GPP). We tested the hypotheses that (i) species differences for wood production between E. grandis and A. mangium monocultures were partly explained by different C partitioning strategies, and (ii) the observed lower wood production in the mixture compared with eucalypt monoculture was mostly explained by a lower partitioning aboveground. At the end of the rotation, total aboveground biomass was lowest in A100 (10.5 kg DM m(-2)), intermediate in MS (12.2 kg DM m(-2)) and highest in E100 (13.9 kg DM m(-2)). The results did not support our first hypothesis of contrasting C partitioning strategies between E. grandis and A. mangium monocultures: the 21% lower growth (delta B-w) in A100 compared with E100 was almost entirely explained by a 23% lower GPP, with little or no species difference in ratios such as TBCF/GPP, ANPP/TBCF, delta B-w/ANPP and delta B-w/GPP. In contrast, the 28% lower delta B-w in MS than in E100 was explained both by a 15% lower GPP and by a 15% lower fraction of GPP allocated to wood growth, thus partially supporting our second hypothesis: mixing the two species led to shifts in C allocations from above- to belowground, and from growth to litter production, for both species.
Resumo:
The aim of this work was to determine the impact of three levels of [CO2] and two levels of soil-nutrient availability on the growth and physiological responses of two tropical tree species differing in their ecological group: Croton urucurana Baillon, a pioneer (P), and also Cariniana legalis (Martius) Kuntze, a late succession (LS). We aimed to test the hypothesis that P species have stronger response to elevated [CO2] than LS species as a result of differences in photosynthetic capacity and growth kinetics between both functional groups. Seedlings of both species were grown in open-top-chambers under high (HN) or low (LN) soil-nutrient supply and exposed to ambient (380 mu mol mol(-1)) or elevated (570 and 760 mu mol mol(-1)) [CO2]. Measurements of gas exchange, chlorophyll a fluorescence, seedling biomass and allocation were made after 70 days of treatment. Results suggest that elevated [CO2] significantly enhances the photosynthetic rates (A) and biomass production in the seedlings of both species, but that soil-nutrient supply has the potential to modify the response of young tropical trees to elevated [CO2]. In relation to plants grown in ambient [CO2], the P species grown under 760 mu mol mol(-1) [CO2] showed increases of 28% and 91% in A when grown in LN and HN, respectively. In P species grown under 570 mu mol mol(-1) [CO2], A increased by 16% under HN, but there was no effect in LN. In LS species, the enhancement of A by effect of 760 mu mol mol(-1) [CO2] was 30% and 70% in LN and HN, respectively. The exposure to 570 mu mol mol(-1) [CO2] stimulated A by 31% in HN, but was no effect in LN. Reductions in stomatal conductance (g(s)) and transpiration (E), as a result of elevated [CO2] were observed. Increasing the nutrient supply from low to high increased both the maximum rate of carboxylation (V-cmax) and maximum potential rate of electron transport (J(max)). As the level of [CO2] increased, both the V-cmax and the J(max) were found to decrease, whereas the J(max)/V-cmax ratio increased. In the LS species, the maximum efficiency of PSII (F-v/F-m) was higher in the 760 mu mol mol(-1) [CO2] treatment relative to other [CO2] treatments. The results suggest that when grown under HN and the highest [CO2], the performance of the P species C. urucurana, in terms of photosynthesis and biomass enhancement, is better than the LS species C. legalis. However, a larger biomass is allocated to roots when C. legalis seedlings were exposed to elevated [CO2]. This response would be an important strategy for plant survival and productivity of the LS species under drought stresses conditions on tropical environments in a global-change scenario. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Guapira graciliflora and Neea theifera are taxonomically related species of the tribe Pisoneae. Both species are found in the same environment, the Brazilian Cerrado, and therefore, are subjected to similar selective pressures. These species occur in oligotrophic environments, yet contain high concentrations of nitrogen in their leaves. The present study was carried out to investigate the ecological role of nitrogen in herbivory on these species. The differences in the N content, compositions of secondary N-metabolites, mechanical resistance, and water content between their leaves indicate that these species have different adaptations as defense mechanisms. In both species, their high nitrogen content seems to promote herbivory. The presence of secondary nitrogen metabolites does not prevent the species from suffering intense damage by herbivores on their early leaves. The herbivory rates observed were lower for mature leaves of both species than for young leaves. In G. graciliflora, nutritional content and leaf hardness are the most important variables correlated with reduction of herbivory rates, whereas in N. theifera, N compounds are also correlated with herbivory rates. Despite the differences in the strategies of these two species, they exhibit a similar efficiency of protection against natural enemies because their total herbivory rates are similar. The difference in their N defense allocation may imply benefits for survival under Cerrado conditions. We briefly discuss the oligotrophic habitat conditions of the studied plants and possible advantages of their strategies of N accumulation and metabolic uses. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The aim of this research paper was to compare the growth of D. ciliaris and D. nuda crabgrass species under non-competitive conditions. To this end, two experiments were conducted, one from March - July 2010 and the other from February - June 2011. The experimental design of both trials was completely randomized making a factorial (2 seasons x 2 species crabgrass x 12 evaluation periods) with four replications. Assessments began at 15 days after sowing (DAS), and repeated weekly until 92 DAS. The variables evaluated were total dry matter (roots+leaves+stems), leaf area, leaf number and tiller. The results were submitted to analysis of variance and the absolute growth rate, relative growth rate and leaf area ratio were calculated using the means, which were adjusted regression models. The crabgrass species were significantly different in leaf area, leaf number, tiller number and dry matter per plant. D. ciliaris for all variables was statistically higher than D. nuda. Regarding the speed at which the growth of the species occurred, the absolute growth rate and relative growth rate of D. ciliaris was also greater than D. nuda. In addition, D. ciliaris also had a lower leaf area ratio indicating greater efficiency in converting light energy into carbohydrates. It can be concluded that D. ciliaris has a higher growth rate in conditions where there is no limitation of nutrients and water availability in relation to D. nuda, mainly due to D. ciliaris have greater leaf area, number of leaves and dry matter accumulation per plant.
Resumo:
Rationale: Coralligenous habitat is considered the second most important subtidal “hot spot” of species diversity in the Mediterranean Sea after the Posidonia oceanica meadows. It can be defined as a typical Mediterranean biogenic hard bottom, mainly produced by the accumulation of calcareous encrusting algae that, together with other builder organisms, form a multidimensional framework with a high micro-spatial variability. The development of this habitat depends on physical factors (i.e. light, hydrodynamism, nutrients, etc.), but also biologic interactions can play a relevant role in structuring the benthic assemblages. This great environmental heterogeneity allows several different assemblages to coexist in a reduced space. One of the most beautiful is that characterised by the Mediterranean gorgonian Paramuricea clavata (Risso, 1826) that can contribute to above 40% of total biomass of the community and brings significant structural complexity into the coralligenous habitat. In sites moderately exposed to waves and currents, P. clavata can form high-density populations (up to 60 colonies m-2) between 20 – 70 m in depth. Being a suspension feeder, where it forms dense populations, P. clavata plays a significant role in transferring energy from planktonic to benthic system. The effects of the branched colonies of P. clavata could be comparable to those of the forests on land. They can affect the micro scale hydrodynamism and light, promoting or inhibiting the growth of other species. Unfortunately, gorgonians are threatened by several anthropogenic disturbance factors (i.e. fishing, pollution, tourism) and by climatic anomalies, linked to the global changes, that are responsible of thermal stress, development of mucilage and enhanced pathogens activity, leading to mass mortality events in last decades. Till now, the possible effects of gorgonian forest loss are largely unknown. Our goal was to analyse the ecological role of these sea fan forests on the coralligenous benthic assemblages. Experimental setup and main results: The influence of P. clavata in the settlement and recruitment of epibenthic organisms was analysed by a field experiment carried out in two randomly selected places: Tavolara island and Portofino promontory. The experiment consisted in recreate the presence and absence of the gorgonian forest on recruitment panels, arranged in four plots per type (forested and non-forested), interspersed each other, and deployed at the same depth. On every forested panel 3 gorgonian colonies about 20 cm height were grafted with the use of Eppendorf tubes and epoxy resin bicomponent simulating a density of 190 sea fans per m-2. This density corresponds to a mean biomass of 825 g DW m-2,3 which is of the same order of magnitude of the natural high-density populations. After about 4 months, the panels were collected and analysed in laboratory in order to estimate the percent cover of all the species that have colonized the substrata. The gorgonian forest effects were tested by multivariate and univariate permutational analyses of the variance (PERMANOVA). Recruited assemblages largely differed between the two study sites, probably due to different environmental conditions including water quality and turbidity. On overall, the presence of P. clavata reduced the settlement and recruitment of several algae: the shadow caused by the gorgonian might reduce light availability and therefore their growth. This effect might be greater in places where the waters are on average more clear, since at Portofino it is less visible and could be masked by the high turbidity of the water. The same pattern was registered for forams, more abundant outside gorgonian forest, probably linked with algal distribution, shadowing effect or alimentary competition. The last one hypothesis could be valid also for serpulids polychaetes that growth mainly on non-forested panels. An opposite trend, was showed by a species of bryozoan and by an hydroid that is facilitated by the presence of P. clavata, probably because it attenuates irradiance level and hydrodynamism. Species diversity was significantly reduced by the presence of P. clavata forests at both sites. This seems in contrast with what we expected, but the result may be influenced by the large algal component on non-forested panels. The analysis confirmed the presence of differences in the species diversity among plots and between sites respectively due to natural high variability of the coralligenous system and to different local environment conditions. The reduction of species diversity due to the presence of gorgonians appeared related to a worst evenness rather than to less species richness. With our experiment it is demonstrated that the presence of P. clavata forests can significantly alter local coralligenous assemblages patterns, promoting or inhibiting the recruitment of some species, modifying trophic relationships and adding heterogeneity and complexity to the habitat. Moreover, P. clavata could have a stabilising effect on the coralligenous assemblages.
Resumo:
In calcareous soils, which are a large share of agricultural soils worldwide, iron availability is limited. Consequently, the whole plant physiology is affected, because of the key role of iron in redox metabolism, resulting in reduced crop yield and quality. Peach cultivation is economically important in northern Italy, and is easily subjected to iron chlorosis. The management of iron nutrition in peach includes grafting on bicarbonate-tolerant rootstocks; other forms of management may be expensive and environmentally impacting. Four genotypes, used as rootstocks for peach and characterized by different degrees of tolerance to chlorosis, were tested in vitro on optimal and bicarbonate-enriched medium. Their redox status and antioxidant responses were assayed; the production and possible roles of nitric oxide (NO) and related compounds were also studied. The most sensitive genotypes show a stronger reduction of the antioxidant enzymatic activities and an increased oxidative stress. A high production of NO was found to be associated to resistant genotypes, whereas sensitive genotypes reacted to stress by downregulating nitrosoglutathione reductase activity. Therefore, NO is proposed to improve the internal iron availability, or to stimulate iron intake.
Resumo:
The aim of this thesis was to investigate some important key factors able to promote the prospected growth of the aquaculture sector. The limited availability of fishmeal and fish oil led the attention of the aquafeed industry to reduce the dependency on marine raw materials in favor of vegetable ingredients. In Chapter 2, we reported the effects of fishmeal replacement by a mixture of plant proteins in turbot (Psetta maxima L.) juveniles. At the end of the trial, it was found that over the 15% plant protein inclusion can cause stress and exert negative effects on growth performance and welfare. Climate change aroused the attention of the aquafeed industry toward the production of specific diets capable to counteract high temperatures. In Chapter 3, we investigated the most suitable dietary lipid level for gilthead seabream (Sparus aurata L.) reared at Mediterranean summer temperature. In this trial, it was highlighted that 18% dietary lipid allows a protein sparing effect, thus making the farming of this species economically and environmentally more sustainable. The introduction of new farmed fish species makes necessary the development of new species-specific diets. In Chapter 4, we assessed growth response and feed utilization of common sole (Solea solea L.) juveniles fed graded dietary lipid levels. At the end of the trial, it was found that increasing dietary lipids over 8% led to a substantial decline in growth performance and feed utilization indices. In Chapter 5, we investigated the suitability of mussel meal as alternative ingredient in diets for common sole juveniles. Mussel meal proved to be a very effective alternative ingredient for enhancing growth performance, feed palatability and feed utilization in sole irrespectively to the tested inclusion levels. This thesis highlighted the importance of formulating more specific diets in order to support the aquaculture growth in a sustainable way.
Resumo:
Food items and nematode parasites were identified from the stomachs of 42 individuals of Phocoena phocoena, 6 of Lagenorhynchus acutus and 8 of L. albirostris stranded off the coastal waters of Northern Scotland between 2004 and 2014. Post-mortem examinations have revealed heavy parasitic worm burdens. Four nematode species complex as Anisakis spp., Contracaeucum spp., Pseudoterronova spp., and Hysterothylacium spp. were recorded. Data on presence of the anisakid species in cetaceans, reported a significative relationship between the presence of Hysterothylacium and the month of host stranding; suggesting a decrease of larval H. aduncum abundance in the period between April and August due to a seasonal effect related to prey availability. Similarly, the parasite burden of the all anisakid genera was related to the year fraction of stranding, and a relationship statistically significant was found just for L. albirostris with an increase between April and October. This finding is explained by a seasonality in occurrence of white-beaked dolphins, with a peak during August, that might be related to movements of shared prey species and competition with other species (Tursiops truncatus). Geographical differences were observed in parasites number of all anisakid species, which was the highest in cetaceans from the East area and lowest in the North coast. The parasites number also increased significantly with the length of the animal and during the year, but with a significant seasonal pattern only for P. phocoena. Regarding diet composition, through a data set consisting of 34 harbour porpoises and 1 Atlantic white-sided dolphins, we found a positive association between parasite number and the cephalopods genus Alloteuthis. This higher level of parasite infection in squid from this area, is probably due to a quantitative distribution of infective forms in squid prey, an abundance of the final host and age or size maturity of squid.
Resumo:
Species coexistence and local-scale species richness are limited by the availability of seeds and microsites for germination and establishment. We conducted a seed addition experiment in seminatural grassland at three sites in southern Switzerland and repeated the experiment in two successive years to evaluate various circumstances under which seed limitation and establishment success affect community functioning. A collection of 144000 seeds of 22 meadow species including grasses and forbs of local provenance was gathered, and seeds were individually sown in a density that resembled natural seed rain. The three communities were seed limited. Three years after sowing, single species varied in emergence (0–50%), survival (0–69%), and establishment rates (0–27%). One annual and 13 perennial species reached reproductive stage. Low establishment at one site and reduced growth at another site indicated stronger microsite limitation compared to the third site. Recruitment was influenced by differences in abiotic environmental conditions between sites (water availability, soil minerals) and by within-site differences in biotic interaction (competition). At the least water-limited site, sowing resulted in an increase in phytomass due to establishment of short-lived perennials in the second and third years after sowing. This increase persisted over the following two years due to establishment of longer-lived perennials. After sowing in a wetter year with higher phytomass, however, productivity did not increase, because higher intensity of competition in an early phase of establishment resulted in less vigorous plants later on. Due to the generally favorable weather conditions during this study, sowing year had a small effect on numbers of established individuals over all species. Recruitment limitation can thus constrain local-scale species richness and productivity, either by a lack of seeds or by reduced seedling growth, likely due to competition from the established vegetation.
Resumo:
Intensification of land use in semi-natural hay meadows has resulted in a decrease in species diversity. This is often thought to be caused by the reduced establishment of plant species due to high competition for light under conditions of increased productivity. Sowing experiments in grasslands have found reliable evidence that diversity can also be constrained by seed availability, implying that processes influencing the production and persistence of seeds may be important for the functioning of ecosystems. So far, the effects of land-use intensification on the seed rain and the persistence of seeds in the soil have been unclear. We selected six pairs of extensively managed (Festuco-Brometea) and intensively managed (Arrhenatheretalia) grassland with traditional late cutting regimes across Switzerland and covering an annual productivity gradient in the range 176–1211 gm−2. In each grassland community, we estimated seed rain and seed bank using eight pooled seed-trap or topsoil samples of 89 cm2 in each of six plots representing an area of c. 150 m2. The seed traps were established in spring 2010 and collected simultaneously with soil cores after an exposure of c. three months. We applied the emergence method in a cold frame over eight months to estimate density of viable seeds. With community productivity reflecting land-use intensification, the density and species richness in the seed rain increased, while mean seed size diminished and the proportions of persistent seeds and of species with persistent seeds in the topsoil declined. Stronger limitation of seeds in extensively managed semi-natural grasslands can explain the fact that such grasslands are not always richer in species than more intensively managed ones.
Resumo:
Clonality is frequently positively correlated with plant invasiveness, but which aspects of clonality make some clonal species more invasive than others is not known. Due to their spreading growth form, clonal plants are likely to experience spatial heterogeneity in nutrient availability. Plasticity in allocation of biomass to clonal growth organs and roots may allow these plants to forage for high-nutrient patches. We investigated whether this foraging response is stronger in species that have become invasive than in species that have not. We used six confamilial pairs of native European clonal plant species differing in invasion success in the USA. We grew all species in large pots under homogeneous or heterogeneous nutrient conditions in a greenhouse, and compared their nutrient-foraging response and performance. Neither invasive nor non-invasive species showed significant foraging responses to heterogeneity in clonal growth organ biomass or in aboveground biomass of clonal offspring. Invasive species had, however, a greater positive foraging response in terms of root and belowground biomass than non-invasive species. Invasive species also produced more total biomass. Our results suggest that the ability for strong root foraging is among the characteristics promoting invasiveness in clonal plants.
Resumo:
Intensification of land use in semi-natural hay meadows has resulted in a decrease in species diversity. This is often thought to be caused by the reduced establishment of plant species due to high competition for light under conditions of increased productivity. Sowing experiments in grasslands have found reliable evidence that diversity can also be constrained by seed availability, implying that processes influencing the production and persistence of seeds may be important for the functioning of ecosystems. So far, the effects of land-use intensification on the seed rain and the persistence of seeds in the soil have been unclear. We selected six pairs of extensively managed (Festuco-Brometea) and intensively managed (Arrhenatheretalia) grassland with traditional late cutting regimes across Switzerland and covering an annual productivity gradient in the range 176-1211 gm(-2). In each grassland community, we estimated seed rain and seed bank using eight pooled seed-trap or topsoil samples of 89 cm(2) in each of six plots representing an area of c. 150 m(2). The seed traps were established in spring 2010 and collected simultaneously with soil cores after an exposure of c. three months. We applied the emergence method in a cold frame over eight months to estimate density of viable seeds. With community productivity reflecting land-use intensification, the density and species richness in the seed rain increased, while mean seed size diminished and the proportions of persistent seeds and of species with persistent seeds in the topsoil declined. Stronger limitation of seeds in extensively managed semi-natural grasslands can explain the fact that such grasslands are not always richer in species than more intensively managed ones. (C) 2013 Elsevier B.V. All rights reserved.