928 resultados para Spatial lag regression model
Resumo:
INTRODUCTION: The purpose of this ecological study was to evaluate the urban spatial and temporal distribution of tuberculosis (TB) in Ribeirão Preto, State of São Paulo, southeast Brazil, between 2006 and 2009 and to evaluate its relationship with factors of social vulnerability such as income and education level. METHODS: We evaluated data from TBWeb, an electronic notification system for TB cases. Measures of social vulnerability were obtained from the SEADE Foundation, and information about the number of inhabitants, education and income of the households were obtained from Brazilian Institute of Geography and Statistics. Statistical analyses were conducted by a Bayesian regression model assuming a Poisson distribution for the observed new cases of TB in each area. A conditional autoregressive structure was used for the spatial covariance structure. RESULTS: The Bayesian model confirmed the spatial heterogeneity of TB distribution in Ribeirão Preto, identifying areas with elevated risk and the effects of social vulnerability on the disease. We demonstrated that the rate of TB was correlated with the measures of income, education and social vulnerability. However, we observed areas with low vulnerability and high education and income, but with high estimated TB rates. CONCLUSIONS: The study identified areas with different risks for TB, given that the public health system deals with the characteristics of each region individually and prioritizes those that present a higher propensity to risk of TB. Complex relationships may exist between TB incidence and a wide range of environmental and intrinsic factors, which need to be studied in future research.
Resumo:
This project focuses on the study of different explanatory models for the behavior of CDS security, such as Fixed-Effect Model, GLS Random-Effect Model, Pooled OLS and Quantile Regression Model. After determining the best fitness model, trading strategies with long and short positions in CDS have been developed. Due to some specifications of CDS, I conclude that the quantile regression is the most efficient model to estimate the data. The P&L and Sharpe Ratio of the strategy are analyzed using a backtesting analogy, where I conclude that, mainly for non-financial companies, the model allows traders to take advantage of and profit from arbitrages.
Resumo:
Due to global warming and shrinking fossil fuel resources, politics as well as society urge for a reduction of green house gas (GHG) emissions. This leads to a re-orientation towards a renewable energy sector. In this context, innovation and new technologies are key success factors. Moreover, the renewable energy sector has entered a consolidation stage, where corporate investors and mergers and acquisitions (M&A) gain in importance. Although both M&A and innovation in the renewable energy sector are important corporate strategies, the link between those two aspects has not been examined before. The present thesis examines the research question how M&A influence the acquirer’s post-merger innovative performance in the renewable energy sector. Based on a framework of relevant literature, three hypotheses are defined. First, the relation between non-technology oriented M&A and post-merger innovative performance is discussed. Second, the impact of absolute acquired knowledge on postmerger innovativeness is examined. Third, the target-acquirer relatedness is discussed. A panel data set of 117 firms collected over a period of six years has been analyzed via a random effects negative binomial regression model and a time lag of one year. The results support a non-significant, negative impact of non-technology M&A on postmerger innovative performance. The applied model did not support a positive and significant impact of absolute acquired knowledge on post-merger innovative performance. Lastly, the results suggest a reverse relation than postulated by Hypothesis 3. Targets from the same industry significantly and negatively influence the acquirers’ innovativeness.
Resumo:
Background:Previous reports have inferred a linear relationship between LDL-C and changes in coronary plaque volume (CPV) measured by intravascular ultrasound. However, these publications included a small number of studies and did not explore other lipid markers.Objective:To assess the association between changes in lipid markers and regression of CPV using published data.Methods:We collected data from the control, placebo and intervention arms in studies that compared the effect of lipidlowering treatments on CPV, and from the placebo and control arms in studies that tested drugs that did not affect lipids. Baseline and final measurements of plaque volume, expressed in mm3, were extracted and the percentage changes after the interventions were calculated. Performing three linear regression analyses, we assessed the relationship between percentage and absolute changes in lipid markers and percentage variations in CPV.Results:Twenty-seven studies were selected. Correlations between percentage changes in LDL-C, non-HDL-C, and apolipoprotein B (ApoB) and percentage changes in CPV were moderate (r = 0.48, r = 0.47, and r = 0.44, respectively). Correlations between absolute differences in LDL-C, non‑HDL-C, and ApoB with percentage differences in CPV were stronger (r = 0.57, r = 0.52, and r = 0.79). The linear regression model showed a statistically significant association between a reduction in lipid markers and regression of plaque volume.Conclusion:A significant association between changes in different atherogenic particles and regression of CPV was observed. The absolute reduction in ApoB showed the strongest correlation with coronary plaque regression.
Resumo:
In automobile insurance, it is useful to achieve a priori ratemaking by resorting to gene- ralized linear models, and here the Poisson regression model constitutes the most widely accepted basis. However, insurance companies distinguish between claims with or without bodily injuries, or claims with full or partial liability of the insured driver. This paper exa- mines an a priori ratemaking procedure when including two di®erent types of claim. When assuming independence between claim types, the premium can be obtained by summing the premiums for each type of guarantee and is dependent on the rating factors chosen. If the independence assumption is relaxed, then it is unclear as to how the tari® system might be a®ected. In order to answer this question, bivariate Poisson regression models, suitable for paired count data exhibiting correlation, are introduced. It is shown that the usual independence assumption is unrealistic here. These models are applied to an automobile insurance claims database containing 80,994 contracts belonging to a Spanish insurance company. Finally, the consequences for pure and loaded premiums when the independence assumption is relaxed by using a bivariate Poisson regression model are analysed.
Resumo:
While much of the literature on cross section dependence has focused mainly on estimation of the regression coefficients in the underlying model, estimation and inferences on the magnitude and strength of spill-overs and interactions has been largely ignored. At the same time, such inferences are important in many applications, not least because they have structural interpretations and provide useful interpretation and structural explanation for the strength of any interactions. In this paper we propose GMM methods designed to uncover underlying (hidden) interactions in social networks and committees. Special attention is paid to the interval censored regression model. Our methods are applied to a study of committee decision making within the Bank of England’s monetary policy committee.
Resumo:
Excessive exposure to solar ultraviolet (UV) is the main cause of skin cancer. Specific prevention should be further developed to target overexposed or highly vulnerable populations. A better characterisation of anatomical UV exposure patterns is however needed for specific prevention. To develop a regression model for predicting the UV exposure ratio (ER, ratio between the anatomical dose and the corresponding ground level dose) for each body site without requiring individual measurements. A 3D numeric model (SimUVEx) was used to compute ER for various body sites and postures. A multiple fractional polynomial regression analysis was performed to identify predictors of ER. The regression model used simulation data and its performance was tested on an independent data set. Two input variables were sufficient to explain ER: the cosine of the maximal daily solar zenith angle and the fraction of the sky visible from the body site. The regression model was in good agreement with the simulated data ER (R(2)=0.988). Relative errors up to +20% and -10% were found in daily doses predictions, whereas an average relative error of only 2.4% (-0.03% to 5.4%) was found in yearly dose predictions. The regression model predicts accurately ER and UV doses on the basis of readily available data such as global UV erythemal irradiance measured at ground surface stations or inferred from satellite information. It renders the development of exposure data on a wide temporal and geographical scale possible and opens broad perspectives for epidemiological studies and skin cancer prevention.
Resumo:
This paper tries to resolve some of the main shortcomings in the empirical literature of location decisions for new plants, i.e. spatial effects and overdispersion. Spatial effects are omnipresent, being a source of overdispersion in the data as well as a factor shaping the functional relationship between the variables that explain a firm’s location decisions. Using Count Data models, empirical researchers have dealt with overdispersion and excess zeros by developments of the Poisson regression model. This study aims to take this a step further, by adopting Bayesian methods and models in order to tackle the excess of zeros, spatial and non-spatial overdispersion and spatial dependence simultaneously. Data for Catalonia is used and location determinants are analysed to that end. The results show that spatial effects are determinant. Additionally, overdispersion is descomposed into an unstructured iid effect and a spatially structured effect. Keywords: Bayesian Analysis, Spatial Models, Firm Location. JEL Classification: C11, C21, R30.
Resumo:
This prospective study applies an extended Information-Motivation-Behavioural Skills (IMB) model to establish predictors of HIV-protection behaviour among HIV-positive men who have sex with men (MSM) during sex with casual partners. Data have been collected from anonymous, self-administered questionnaires and analysed by using descriptive and backward elimination regression analyses. In a sample of 165 HIV-positive MSM, 82 participants between the ages of 23 and 78 (M=46.4, SD=9.0) had sex with casual partners during the three-month period under investigation. About 62% (n=51) have always used a condom when having sex with casual partners. From the original IMB model, only subjective norm predicted condom use. More important predictors that increased condom use were low consumption of psychotropics, high satisfaction with sexuality, numerous changes in sexual behaviour after diagnosis, low social support from friends, alcohol use before sex and habitualised condom use with casual partner(s). The explanatory power of the calculated regression model was 49% (p<0.001). The study reveals the importance of personal and social resources and of routines for condom use, and provides information for the research-based conceptualisation of prevention offers addressing especially people living with HIV ("positive prevention").
Resumo:
Geographical information systems (GIS) are tools that have been recently tested for improving our understanding of the spatial distribution of disease. The objective of this paper was to further develop the GIS technology to model and control schistosomiasis using environmental, social, biological and remote-sensing variables. A final regression model (R² = 0.39) was established, after a variable selection phase, with a set of spatial variables including the presence or absence of Biomphalaria glabrata, winter enhanced vegetation index, summer minimum temperature and percentage of houses with water coming from a spring or well. A regional model was also developed by splitting the state of Minas Gerais (MG) into four regions and establishing a linear regression model for each of the four regions: 1 (R² = 0.97), 2 (R² = 0.60), 3 (R² = 0.63) and 4 (R² = 0.76). Based on these models, a schistosomiasis risk map was built for MG. In this paper, geostatistics was also used to make inferences about the presence of Biomphalaria spp. The result was a map of species and risk areas. The obtained risk map permits the association of uncertainties, which can be used to qualify the inferences and it can be thought of as an auxiliary tool for public health strategies.
Resumo:
In recent research, both soil (root-zone) and air temperature have been used as predictors for the treeline position worldwide. In this study, we intended to (a) test the proposed temperature limitation at the treeline, and (b) investigate effects of season length for both heat sum and mean temperature variables in the Swiss Alps. As soil temperature data are available for a limited number of sites only, we developed an air-to-soil transfer model (ASTRAMO). The air-to-soil transfer model predicts daily mean root-zone temperatures (10cm below the surface) at the treeline exclusively from daily mean air temperatures. The model using calibrated air and root-zone temperature measurements at nine treeline sites in the Swiss Alps incorporates time lags to account for the damping effect between air and soil temperatures as well as the temporal autocorrelations typical for such chronological data sets. Based on the measured and modeled root-zone temperatures we analyzed. the suitability of the thermal treeline indicators seasonal mean and degree-days to describe the Alpine treeline position. The root-zone indicators were then compared to the respective indicators based on measured air temperatures, with all indicators calculated for two different indicator period lengths. For both temperature types (root-zone and air) and both indicator periods, seasonal mean temperature was the indicator with the lowest variation across all treeline sites. The resulting indicator values were 7.0 degrees C +/- 0.4 SD (short indicator period), respectively 7.1 degrees C +/- 0.5 SD (long indicator period) for root-zone temperature, and 8.0 degrees C +/- 0.6 SD (short indicator period), respectively 8.8 degrees C +/- 0.8 SD (long indicator period) for air temperature. Generally, a higher variation was found for all air based treeline indicators when compared to the root-zone temperature indicators. Despite this, we showed that treeline indicators calculated from both air and root-zone temperatures can be used to describe the Alpine treeline position.
Resumo:
In the fixed design regression model, additional weights areconsidered for the Nadaraya--Watson and Gasser--M\"uller kernel estimators.We study their asymptotic behavior and the relationships between new andclassical estimators. For a simple family of weights, and considering theIMSE as global loss criterion, we show some possible theoretical advantages.An empirical study illustrates the performance of the weighted estimatorsin finite samples.
Resumo:
This paper shows how recently developed regression-based methods for thedecomposition of health inequality can be extended to incorporateindividual heterogeneity in the responses of health to the explanatoryvariables. We illustrate our method with an application to the CanadianNPHS of 1994. Our strategy for the estimation of heterogeneous responsesis based on the quantile regression model. The results suggest that thereis an important degree of heterogeneity in the association of health toexplanatory variables which, in turn, accounts for a substantial percentageof inequality in observed health. A particularly interesting finding isthat the marginal response of health to income is zero for healthyindividuals but positive and significant for unhealthy individuals. Theheterogeneity in the income response reduces both overall health inequalityand income related health inequality.
Resumo:
The methylation status of the O(6)-methylguanine-DNA methyltransferase (MGMT) gene is an important predictive biomarker for benefit from alkylating agent therapy in glioblastoma. Recent studies in anaplastic glioma suggest a prognostic value for MGMT methylation. Investigation of pathogenetic and epigenetic features of this intriguingly distinct behavior requires accurate MGMT classification to assess high throughput molecular databases. Promoter methylation-mediated gene silencing is strongly dependent on the location of the methylated CpGs, complicating classification. Using the HumanMethylation450 (HM-450K) BeadChip interrogating 176 CpGs annotated for the MGMT gene, with 14 located in the promoter, two distinct regions in the CpG island of the promoter were identified with high importance for gene silencing and outcome prediction. A logistic regression model (MGMT-STP27) comprising probes cg1243587 and cg12981137 provided good classification properties and prognostic value (kappa = 0.85; log-rank p < 0.001) using a training-set of 63 glioblastomas from homogenously treated patients, for whom MGMT methylation was previously shown to be predictive for outcome based on classification by methylation-specific PCR. MGMT-STP27 was successfully validated in an independent cohort of chemo-radiotherapy-treated glioblastoma patients (n = 50; kappa = 0.88; outcome, log-rank p < 0.001). Lower prevalence of MGMT methylation among CpG island methylator phenotype (CIMP) positive tumors was found in glioblastomas from The Cancer Genome Atlas than in low grade and anaplastic glioma cohorts, while in CIMP-negative gliomas MGMT was classified as methylated in approximately 50 % regardless of tumor grade. The proposed MGMT-STP27 prediction model allows mining of datasets derived on the HM-450K or HM-27K BeadChip to explore effects of distinct epigenetic context of MGMT methylation suspected to modulate treatment resistance in different tumor types.
Resumo:
This paper presents a statistical model for the quantification of the weight of fingerprint evidence. Contrarily to previous models (generative and score-based models), our model proposes to estimate the probability distributions of spatial relationships, directions and types of minutiae observed on fingerprints for any given fingermark. Our model is relying on an AFIS algorithm provided by 3M Cogent and on a dataset of more than 4,000,000 fingerprints to represent a sample from a relevant population of potential sources. The performance of our model was tested using several hundreds of minutiae configurations observed on a set of 565 fingermarks. In particular, the effects of various sub-populations of fingers (i.e., finger number, finger general pattern) on the expected evidential value of our test configurations were investigated. The performance of our model indicates that the spatial relationship between minutiae carries more evidential weight than their type or direction. Our results also indicate that the AFIS component of our model directly enables us to assign weight to fingerprint evidence without the need for the additional layer of complex statistical modeling involved by the estimation of the probability distributions of fingerprint features. In fact, it seems that the AFIS component is more sensitive to the sub-population effects than the other components of the model. Overall, the data generated during this research project contributes to support the idea that fingerprint evidence is a valuable forensic tool for the identification of individuals.