980 resultados para Spatial distribution of industry
Resumo:
The Humid Chaco of Northeast Paraguay harbors monoculture palm savannas in which Copernicia alba is the only dominant overstory species. The study’s objective was to provide the complete spatial distribution of a simple ecosystem lacking confounding factors of overstory competition and changes in slope. Palms within six, 50 x 50m plots were marked by their GPS location and measured for dbh and total stem height. The spatial distribution was individually analyzed for each plot at the local scale up to 12 m using Ripley’s K test. For the total population including juvenile and adult plants, the sample plots contained both random and clustered distribution patterns. In each of the six plots, the juvenile populations exhibited more clustered patterns than the adult population of each plot.
Resumo:
In order to understand and protect ecosystems, local gene pools need to be evaluated with respect to their uniqueness. Cryptic species present a challenge in this context because their presence, if unrecognized, may lead to serious misjudgement of the distribution of evolutionarily distinct genetic entities. In this study, we describe the current geographical distribution of cryptic species of the ecologically important stream amphipod Gammarus fossarum (types A, B and C). We use a novel pyrosequencing assay for molecular species identification and survey 62 populations in Switzerland, plus several populations in Germany and eastern France. In addition, we compile data from previous publications (mainly Germany). A clear transition is observed from type A in the east (Danube and Po drainages) to types B and, more rarely, C in the west (Meuse, Rhone, and four smaller French river systems). Within the Rhine drainage, the cryptic species meet in a contact zone which spans the entire G. fossarum distribution range from north to south. This large-scale geographical sorting indicates that types A and B persisted in separate refugia during Pleistocene glaciations. Within the contact zone, the species rarely co-occur at the same site, suggesting that ecological processes may preclude long-term coexistence. The clear phylogeographical signal observed in this study implies that, in many parts of Europe, only one of the cryptic species is present.
Resumo:
The spatial distribution of the American lobster Homarus americanus is influenced by many factors, which are often difficult to quantify. We implemented a modeling approach for quantifying season-, size-, and sex-specific lobster spatial distribution in the Gulf of Maine with respect to environmental and spatial variables including bottom temperature, bottom salinity, latitude, longitude, depth, distance offshore, and 2 substratum features. Lobster distribution was strongly associated with temperature and depth, and differed seasonally by sex. In offshore waters in the fall, females were dominant at higher latitudes and males at lower latitudes. This segregation was not apparent in the spring although females were still dominant at higher latitudes in offshore waters. Juveniles and adults were also distributed differently; juveniles were more abundant at the lower latitudes in inshore waters, while adults were more widespread along the entire coast. These patterns are consistent with the ecology of the American lobster. This study provides a tool to evaluate changes in lobster spatial distribution with respect to changes in key habitat and other environmental variables, and consequently could be of value for the management of the American lobster.
Resumo:
The near nucleus coma of Comet 9P/Tempel 1 has been simulated with the 3D Direct Simulation Monte Carlo (DSMC) code PDSC++ (Su, C.-C. [2013]. Parallel Direct Simulation Monte Carlo (DSMC) Methods for Modeling Rarefied Gas Dynamics. PhD Thesis, National Chiao Tung University, Taiwan) and the derived column densities have been compared to observations of the water vapour distribution found by using infrared imaging spectrometer on the Deep Impact spacecraft (Feaga, L.M., A’Hearn, M.F., Sunshine, J.M., Groussin, O., Farnham, T.L. [2007]. Icarus 191(2), 134–145. http://dx.doi.org/10.1016/j.icarus.2007.04.038). Modelled total production rates are also compared to various observations made at the time of the Deep Impact encounter. Three different models were tested. For all models, the shape model constructed from the Deep Impact observations by Thomas et al. (Thomas, P.C., Veverka, J., Belton, M.J.S., Hidy, A., A’Hearn, M.F., Farnham, T.L., et al. [2007]. Icarus, 187(1), 4–15. http://dx.doi.org/10.1016/j.icarus.2006.12.013) was used. Outgassing depending only on the cosine of the solar insolation angle on each shape model facet is shown to provide an unsatisfactory model. Models constructed on the basis of active areas suggested by Kossacki and Szutowicz (Kossacki, K., Szutowicz, S. [2008]. Icarus, 195(2), 705–724. http://dx.doi.org/10.1016/j.icarus.2007.12.014) are shown to be superior. The Kossacki and Szutowicz model, however, also shows deficits which we have sought to improve upon. For the best model we investigate the properties of the outflow.
Spatial Distribution of Stem Cell-Like Keratinocytes in Dissected Compound Hair Follicles of the Dog
Resumo:
Hair cycle disturbances are common in dogs and comparable to some alopecic disorders in humans. A normal hair cycle is maintained by follicular stem cells which are predominately found in an area known as the bulge. Due to similar morphological characteristics of the bulge area in humans and dogs, the shared particularity of compound hair follicles as well as similarities in follicular biomarker expression, the dog is a promising model to study human hair cycle and stem cell disorders. To gain insight into the spatial distribution of follicular keratinocytes with stem cell potential in canine compound follicles, we microdissected hair follicles in anagen and telogen from skin samples of freshly euthanized dogs. The keratinocytes isolated from different locations were investigated for their colony forming efficiency, growth and differentiation potential as well as clonal growth. Our results indicate that i) compound and single hair follicles exhibit a comparable spatial distribution pattern with respect to cells with high growth potential and stem cell-like characteristics, ii) the lower isthmus (comprising the bulge) harbors most cells with high growth potential in both, the anagen and the telogen hair cycle stage, iii) unlike in other species, colonies with highest growth potential are rather small with an irregular perimeter and iv) the keratinocytes derived from the bulbar region exhibit characteristics of actively dividing transit amplifying cells. Our results now provide the basis to conduct comparative studies of normal dogs and those with hair cycle disorders with the possibility to extend relevant findings to human patients.
Resumo:
Background Past and recent evidence shows that radionuclides in drinking water may be a public health concern. Developmental thresholds for birth defects with respect to chronic low level domestic radiation exposures, such as through drinking water, have not been definitely recognized, and there is a strong need to address this deficiency in information. In this study we examined the geographic distribution of orofacial cleft birth defects in and around uranium mining district Counties in South Texas (Atascosa, Bee, Brooks, Calhoun, Duval, Goliad, Hidalgo, Jim Hogg, Jim Wells, Karnes, Kleberg, Live Oak, McMullen, Nueces, San Patricio, Refugio, Starr, Victoria, Webb, and Zavala), from 1999 to 2007. The probable association of cleft birth defect rates by ZIP codes classified according to uranium and radium concentrations in drinking water supplies was evaluated. Similar associations between orofacial cleft birth defects and radium/radon in drinking water were reported earlier by Cech and co-investigators in another of the Gulf Coast region (Harris County, Texas).50, 55 Since substantial uranium mining activity existed and still exists in South Texas, contamination of drinking water sources with radiation and its relation to birth defects is a ground for concern. ^ Methods Residential addresses of orofacial cleft birth defect cases, as well as live births within the twenty Counties during 1999-2007 were geocoded and mapped. Prevalence rates were calculated by ZIP codes and were mapped accordingly. Locations of drinking water supplies were also geocoded and mapped. ZIP codes were stratified as having high combined uranium (≥30μg/L) vs. low combined uranium (<30μg/L). Likewise, ZIP codes having the uranium isotope, Ra-226 in drinking water, were also stratified as having elevated radium (≥3 pCi/L) vs. low radium (<3 pCi/L). A linear regression was performed using STATA® generalized linear model (GLM) program to evaluate the probable association between cleft birth defect rates by ZIP codes and concentration of uranium and radium via domestic water supply. These rates were further adjusted for potentially confounding variables such as maternal age, education, occupation, and ethnicity. ^ Results This study showed higher rates of cleft births in ZIP codes classified as having high combined uranium versus ZIP codes having low combined uranium. The model was further improved by adding radium stratified as explained above. Adjustment for maternal age and ethnicity did not substantially affect the statistical significance of uranium or radium concentrations in household water supplies. ^ Conclusion Although this study lacks individual exposure levels, the findings suggest a significant association between elevated uranium and radium concentrations in tap water and high orofacial birth defect rates by ZIP codes. Future case-control studies that can measure individual exposure levels and adjust for contending risk factors could result in a better understanding of the exposure-disease association.^
Resumo:
We report on the spatial distribution of isotopic compositions of the two planktic foraminifera species Globigerina bulloides and Neogloboquadrina pachyderma (dex.), and the faunal assemblages of planktic foraminifera in 91 surface sediment samples along the Chilean continental slope between 23°S and 44°S. Both d13C and d18O data of N. pachyderma (dex.) show little variability in the study area. North of 39°S, the isotopic values of N. pachyderma (dex.) are heavier than those of G. bulloides, whereas south of 39°S, this relation inverses. This is indicative for a change from a well-mixed, deep thermocline caused by coastal upwelling north of 39°S to well-stratified water masses in a non-upwelling environment south of 39°S. In addition, the faunal composition of planktic foraminifera marks this change by transition from an upwelling assemblage north of 39°S to a high-nutrient-non-upwelling assemblage south of 39°S, which is characterized by decreased contributions of upwelling indicators such as G. bulloides, N. pachyderma (sin.), and Globigerinita glutinata. In general, we can conclude that food and light rather than temperature are the primary control of the planktic foraminiferal assemblage between 23°S and 44°S off Chile. Our data point to higher marine productivity at upwelling centers north of 25°S and at 30-33°S. South of 39°S, significant supply of nutrients by fluvial input most likely boosts the productivity.
Resumo:
Abstract The cloud forest is a special type of forest ecosystem that depends on suitable conditions of humidity and temperature to exist; hence, it is a very fragile ecosystem. The cloud forest is also one of the richest ecosystems in terms of species diversity and rate of endemism. However, today, it is one of the most threatened ecosystems in the world. Little is known about tree species distribution and coexistence among cloud forest trees. Trees are essential to understanding ecosystem functioning and maintenance because they support the ecosystem in important ways. For this dissertation, an analysis of woody plant species distribution at a small scale in a north-Peruvian Andean cloud forest was performed, and some of the factors implicated in the observed patterns were identified. Towards that end, different natural factors acting on species distribution within the forest were investigated: (i) intra-specific arrangements, (ii) heterospecific spatial relationships and (iii) relationships with external environmental factors. These analyses were conducted first on standing woody plants and then on seedlings. The woody plants were found to be clumped in the forest, either considering all the species together or each species separately. However, each species presented a specific pattern and specific spatial relationship among different-age individuals. Dispersal mode, growth form and shade tolerance played roles in the final distribution of the species. Furthermore, spatial associations among species, either positive or negative, were observed. These associations were more numerous when considering individuals of the interacting species at different developmental stages, i.e., younger individuals from one species and older individuals from another. Accordingly, competition and facilitation are asymmetric processes and vary throughout the life of an individual. Moreover, some species appear to prefer certain habitat conditions and avoid other habitats. The habitat definition that best explains species distribution is that which includes both environmental and stand characteristics; thus, a combination of these factors is necessary to understanding species' niche preferences. Seedling distribution was also associated with habitat conditions, but these conditions explained less than the 30% of the spatial variation. The position of conspecific adult individuals also affected seedling distribution; although the seedlings of many tree species avoid the vicinity of conspecifics, a few species appeared to prefer the formation of cohorts around their parent trees. The importance of habitat conditions and distance dependence with conspecifics varied among regions within the forest as well as on the developmental stage of the stand. The results from this thesis suggest that different species can coexist within a given space, forming a “puzzle” of species as a result of the intra- and interspecific spatial relationships along with niche preferences and adaptations that operate at different scales. These factors not only affect each species in a different way, but specific preferences also vary throughout species' lifespans. Resumen Resumen El bosque de niebla es uno de los ecosistemas más amenazados del mundo además de ser uno de los más frágiles. Son formaciones azonales que dependen de la existencia de unas condiciones de humedad y temperatura que permitan la formación de nubes que cubran el bosque; lo que dificulta en gran medida su conservación. También es uno de los ecosistemas con mayor riqueza de especies además de tener uno de los mayores porcentajes de endemismos. Uno de los aspectos más importantes para entender el ecosistema, es identificar y entender los elementos que lo componen y los mecanismos que regulan las relaciones entre ellos. Los árboles son el soporte del ecosistema. Sin embargo, apenas hay información sobre la distribución y coexistencia de los árboles en los bosques de niebla. Esta tesis presenta un análisis de la distribución a pequeña escala de las plantas leñosas en un bosque de niebla situado en la cordillera andina del norte de Perú; así como el análisis de algunos de los factores que pueden estar implicados en que se origine la distribución observada. Para este propósito se estudia cómo influyen factores de diferente naturaleza en la distribución de las especies (i) organización intra-específica (ii) relaciones espaciales heterospecíficas y (iii) relación con factores ambientales externos. En estos análisis se estudiaron primero las plantas jóvenes y las adultas, y después las plántulas. Los árboles aparecieron agregados en el bosque, tanto considerando todos a la vez como cuando se estudió cada especie por separado. Sin embargo, cada especie mostró un patrón distinto así como una particular relación espacial entre individuos jóvenes y adultos. El modo de dispersión, la forma de vida y la tolerancia de la especies estuvieron relacionados con el patrón general observado. Se vio también que ciertas especies aparecían relacionadas con otras, tanto de forma positiva (compartiendo zonas) como negativa (apareciendo en áreas distintas). Las asociaciones fueron mucho más numerosas cuando se consideraron los pares de especies en diferente estado de desarrollo, es decir, individuos jóvenes de una especie e individuos mayores de la otra. Eso indicaría que los procesos de competencia y facilitación son asimétricos y además varían durante la vida de la planta. Por otro lado, algunas especies aparecen preferentemente bajo ciertas condiciones de hábitat y evitan otras. La definición de hábitat a la que mejor responden las especies es cuando se incluyen tanto variables ambientales como de masa; así que ambos tipos de variables son necesarias para entender la preferencia de las especies por ciertos nichos. La distribución de las plántulas también estuvo relacionada con condiciones de hábitat, pero eso sólo llegaba a explicar hasta un 30% de la variabilidad espacial. La posición de los adultos de la misma especie también afectó a la distribución de las plántulas. En bastantes especies las plántulas evitan la cercanía de adultos de su misma especie, padres potenciales, aunque algunas especies aisladas mostraron el patrón contrario y aparecieron preferentemente en las mismas áreas que sus padres. La importancia de las condiciones de hábitat y posición de los adultos en la disposición de las plántulas varía de una zona a otra del bosque y además también varía según el estado de desarrollo de la masa.
Resumo:
Aims Dehesas are agroforestry systems characterized by scattered trees among pastures, crops and/or fallows. A study at a Spanish dehesa has been carried out to estimate the spatial distribution of the soil organic carbon stock and to assess the influence of the tree cover. Methods The soil organic carbon stock was estimated from the five uppermost cm of themineral soil with high spatial resolution at two plots with different grazing intensities. The Universal Kriging technique was used to assess the spatial distribution of the soil organic carbon stocks, using tree coverage within a buffering area as an auxiliary variable. Results A significant positive correlation between tree presence and soil organic carbon stocks up to distances of around 8 m from the trees was found. The tree crown cover within a buffer up to a distance similar to the crown radius around the point absorbed 30 % of the variance in the model for both grazing intensities, but residual variance showed stronger spatial autocorrelation under regular grazing conditions. Conclusions Tree cover increases soil organic carbon stocks, and can be satisfactorily estimated by means of crown parameters. However, other factors are involved in the spatial pattern of the soil organic carbon distribution. Livestock plays an interactive role together with tree presence in soil organic carbon distribution.