994 resultados para Space Density
Resumo:
Patterns of size inequality in crowded plant populations are often taken to be indicative of the degree of size asymmetry of competition, but recent research suggests that some of the patterns attributed to size‐asymmetric competition could be due to spatial structure. To investigate the theoretical relationships between plant density, spatial pattern, and competitive size asymmetry in determining size variation in crowded plant populations, we developed a spatially explicit, individual‐based plant competition model based on overlapping zones of influence. The zone of influence of each plant is modeled as a circle, growing in two dimensions, and is allometrically related to plant biomass. The area of the circle represents resources potentially available to the plant, and plants compete for resources in areas in which they overlap. The size asymmetry of competition is reflected in the rules for dividing up the overlapping areas. Theoretical plant populations were grown in random and in perfectly uniform spatial patterns at four densities under size‐asymmetric and size‐symmetric competition. Both spatial pattern and size asymmetry contributed to size variation, but their relative importance varied greatly over density and over time. Early in stand development, spatial pattern was more important than the symmetry of competition in determining the degree of size variation within the population, but after plants grew and competition intensified, the size asymmetry of competition became a much more important source of size variation. Size variability was slightly higher at higher densities when competition was symmetric and plants were distributed nonuniformly in space. In a uniform spatial pattern, size variation increased with density only when competition was size asymmetric. Our results suggest that when competition is size asymmetric and intense, it will be more important in generating size variation than is local variation in density. Our results and the available data are consistent with the hypothesis that high levels of size inequality commonly observed within crowded plant populations are largely due to size‐asymmetric competition, not to variation in local density.
Resumo:
Regulation of tissue size requires fine tuning at the single-cell level of proliferation rate, cell volume, and cell death. Whereas the adjustment of proliferation and growth has been widely studied [1, 2, 3, 4 and 5], the contribution of cell death and its adjustment to tissue-scale parameters have been so far much less explored. Recently, it was shown that epithelial cells could be eliminated by live-cell delamination in response to an increase of cell density [6]. Cell delamination was supposed to occur independently of caspase activation and was suggested to be based on a gradual and spontaneous disappearance of junctions in the delaminating cells [6]. Studying the elimination of cells in the midline region of the Drosophila pupal notum, we found that, contrary to what was suggested before, Caspase 3 activation precedes and is required for cell delamination. Yet, using particle image velocimetry, genetics, and laser-induced perturbations, we confirmed [ 6] that local tissue crowding is necessary and sufficient to drive cell elimination and that cell elimination is independent of known fitness-dependent competition pathways [ 7, 8 and 9]. Accordingly, activation of the oncogene Ras in clones was sufficient to compress the neighboring tissue and eliminate cells up to several cell diameters away from the clones. Mechanical stress has been previously proposed to contribute to cell competition [ 10 and 11]. These results provide the first experimental evidences that crowding-induced death could be an alternative mode of super-competition, namely mechanical super-competition, independent of known fitness markers [ 7, 8 and 9], that could promote tumor growth.
Resumo:
Seismic velocities in rocks are influenced by the properties of the solid, the pore fluid, and the pore space. Cracks dramatically affect seismic velocities in rocks; their influence on the effective elastic moduli of rocks depends on their shape and concentration. Thin cracks (or fractures) substantially lower the moduli of a rock relative to the effect of spherical voids (or vesicles), and lower moduli are reflected by lower P- and S-wave velocities. The objective of this research is to determine the types and concentrations of cracks and their influence on the seismic properties of subaerially erupted basalts drilled from Hole 990A on the Southeast Greenland margin during Ocean Drilling Program Leg 163. Ellipsoidal cracks are used to model the voids in the rocks. The elastic moduli of the solid (grains) are also free parameters in the inverse modeling procedure. The apparent grain moduli reflect a weighted average of the moduli of the constituent minerals (e.g., plagioclase, augite, and clay minerals). The results indicate that (1) there is a strong relationship between P-wave velocity and porosity, suggesting a similarity of pore shape distributions, (2) the distribution of crack types within the massive, central region of aa flows from Hole 990A is independent of total porosity, (3) thin cracks are the first to be effectively sealed by alteration products, and (4) grain densities (an alteration index) and apparent grain moduli of the basalt samples are directly related.
Resumo:
We used piston cores recovered in the western Bering Sea to reconstruct millennial-scale changes in marine productivity and terrigenous matter supply over the past ~180 kyr. Based on a geochemical multi-proxy approach, our results indicate closely interacting processes controlling marine productivity and terrigenous matter supply comparable to the situation in the Okhotsk Sea. Overall, terrigenous inputs were high, whereas export production was low. Minor increases in marine productivity occurred during intervals of Marine Isotope Stage 5 and interstadials, but pronounced maxima were recorded during interglacials and Termination I. The terrigenous material is suggested to be derived from continental sources on the eastern Bering Sea shelf and to be subsequently transported via sea ice, which is likely to drive changes in surface productivity, terrigenous inputs, and upper-ocean stratification. From our results we propose glacial, deglacial, and interglacial scenarios for environmental change in the Bering Sea. These changes seem to be primarily controlled by insolation and sea-level forcing which affect the strength of atmospheric pressure systems and sea-ice growth. The opening history of the Bering Strait is considered to have had an additional impact. High-resolution core logging data (color b*, XRF scans) strongly correspond to the Dansgaard-Oeschger climate variability registered in the NGRIP ice core and support an atmospheric coupling mechanism of Northern Hemisphere climates.
Resumo:
The high-resolution marine isotope climate record indicates pronounced global cooling during the Langhian (16-13.8 Ma), beginning with the warm middle Miocene climatic optimum and ending with significant Antarctic ice sheet expansion and the transition to "icehouse" conditions. Terrestrial paleoclimate data from this interval is sparse and sometimes conflicting. In particular, there are gaps in the terrestrial record in the Pacific Northwest during the late Langhian and early Serravallian between about 14.5 and 12.5 Ma. New terrestrial paleoclimate data from this time and region could reconcile these conflicting records. Paleosols are particularly useful for reconstructing paleoenvironment because the rate and style of pedogenesis is primarily a function of surface environmental conditions; however, complete and well-preserved paleosols are uncommon. Most soils form in erosive environments that are not preserved, or in environments such as floodplains that accumulate in small increments; the resulting cumulic soils are usually thin, weakly developed, and subject to diagenetic overprinting from subsequent soils. The paleosol at Cricket Flat in northeastern Oregon is an unusually complete and well-preserved paleosol from a middle Miocene volcanic sequence in the Powder River Volcanic Field. An olivine basalt flow buried the paleosol at approximately 13.8 ± 0.6 Ma, based on three 40Ar/39Ar dates on the basalt. We described the Cricket Flat paleosol and used its physical and chemical profile and micromorphology to assess pedogenesis. The Cricket Flat paleosol is an Ultisol-like paleosol, chemically consistent with a high degree of weathering. Temperature and rainfall proxies suggest that Cricket Flat received 1120 ± 180 mm precipitation y-1 and experienced a mean annual temperature of 14.5 ± 2.1 °C during the formation of the paleosol, significantly warmer and wetter than today. This suggests slower cooling after the middle Miocene climatic optimum than is seen in the existing paleosol record.
Resumo:
Learning the structure of a graphical model from data is a common task in a wide range of practical applications. In this paper, we focus on Gaussian Bayesian networks, i.e., on continuous data and directed acyclic graphs with a joint probability density of all variables given by a Gaussian. We propose to work in an equivalence class search space, specifically using the k-greedy equivalence search algorithm. This, combined with regularization techniques to guide the structure search, can learn sparse networks close to the one that generated the data. We provide results on some synthetic networks and on modeling the gene network of the two biological pathways regulating the biosynthesis of isoprenoids for the Arabidopsis thaliana plant
Resumo:
The one-dimensional self-similar motion of an initially cold, half-space plasma of electron density 0,produced by the (anomalous) absorption of a laser pulse of irradiation
Resumo:
The one-dimensional self-similar motion of an initially cold, half-space plasma of electron density n,produced by the (anomalous) absorption of a laser pulse of irradiation
density nc, is considered; the analysis, which allows for electron heat conduction and ion-electron energy exchange, involves three dimensionless numbers: e = nc/n0 assumed small, Z, (ion charge number), and a parameter a
Resumo:
During launch, satellite and their equipment are subjected to loads of random nature and with a wide frequency range. Their vibro-acoustic response is an important issue to be analysed, for example for folded solar arrays and antennas. The main issue at low modal density is the modelling combinations engaging air layers, structures and external fluid. Depending on the modal density different methodologies, as FEM, BEM and SEA should be considered. This work focuses on the analysis of different combinations of the methodologies previously stated used in order to characterise the vibro-acoustic response of two rectangular sandwich structure panels isolated and engaging an air layer between them under a diffuse acoustic field. Focusing on the modelling of air layers, different models are proposed. To illustrate the phenomenology described and studied, experimental results from an acoustic test on an ARA-MKIII solar array in folded configuration are presented along with numerical results.
Resumo:
The third Training School of the Action took place in Vitoria-Gasteiz (Basque country, Spain) from 24th to 26th September 2014. Vitoria-Gateiz has experimented an important urban outgrowth in the last decade, mainly through the planning and development of two new neighborhoods, Zabalgana and Salburúa, situated at the eastern and western border of the city, by the Greenbelt. These new development are well-equipped and designed according to sustainability principles. Nevertheless, among the main problems they present is their over-dimensioned public space, which creates some areas lacking enough density and mix of uses. On the other hand it is very expensive for the municipality to maintain these public space with the high Vitorian urban standards for public space. The proposed solution for this problem is a strategy of "re-densification" through the insertion of new uses The debate has arisen about which are the most adequate uses to insert in order to get an increasing of urban vitality, specially considering that housing has reached its peak and that Vitoria-Gasteiz is well served with social and sport amenities. The main goal of the TS was to offer an opportunity for the reflection about how urban agriculture might be an optimal alternative for the re-qualifying of this over-dimensioned public space in the new neighbourhoods, especially considering it synergic potential as a tool for production, leisure and landscaping, including the possibility of energy crops within the limits of urban space. Continuity with rural and natural surrounding area through alternatives for urban fringe at the small scale is a relevant issue to be considered as well within the reflection. Taking Zabalgana neighbourhood as a practical field for experiment, the Training School is conceived as a practical and intensive design charrette to be held during a whole day after two days of local knowledge-deepening through field visits and presentations.