111 resultados para Sox2 3’UTR


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The skin is composed of two major compartments, the dermis and epidermis. The epidermis forms a barrier to protect the body. The stratified epithelium has self-renewing capacity throughout life, and continuous turnover is mediated by stem cells in the basal layer. p63 is structurally and functionally related to p53. In spite of their structural similarities, p63 is critical for the development and maintenance of stratified epithelial tissues, unlike p53. p63 is highly expressed in the epidermis and previously has been shown to play a critical role in the development and maintenance of the epidermis. The study of p63 has been complicated due to the existence of multiple isoforms: those with a transactivation domain (TAp63) and those lacking this domain (ΔNp63). Mice lacking p63 cannot form skin, have craniofacial and skeletal defects and die within hours after birth. These defects are due to the ability of p63 to regulate multiple processes in skin development including epithelial stem cell proliferation, differentiation, and adherence programs. To determine the roles of these isoforms in skin development and maintenance, isoform specific p63 conditional knock out mice were generated by our lab. TAp63-/- mice age prematurely, develop blisters, and display wound-healing defects that result from hyperproliferation of dermal stem cells. That results in premature depletion of these cells, which are necessary for wound repair, that indicates TAp63 plays a role in dermal/epidermal maintenance. To study the role of ΔNp63, I generated a ΔNp63-/- mouse and analyzed the skin by performing immunofluorescence for markers of epithelial differentiation. The ΔNp63-/- mice developed a thin, disorganized epithelium but differentiation markers were expressed. Interestingly, the epidermis from ΔNp63-/- mice co-expressed K14 and K10 in the same cell suggesting defects in epidermal differentiation and stratification. This phenotype is reminiscent of the DGCR8fl/fl;K14Cre and Dicerfl/fl;K14Cre mice skin. Importantly, DGCR8-/- embryonic stem cells (ESCs) display a hyperproliferation defect by failure to silence pluripotency genes. Furthermore, I have observed that epidermal cells lacking ΔNp63 display a phenotype reminiscent of embryonic stem cells instead of keratinocytes. Thus, I hypothesize that genes involved in maintaining pluripotency, like Oct4, may be upregulated in the absence of ΔNp63. To test this, q-RT PCR was performed for Oct4 mRNA with wild type and ΔNp63-/- 18.5dpc embryo skin. I found that the level of Oct4 was dramatically increased in the absence of ΔNp63-/-. Based on these results, I hypothesized that ΔNp63 induces differentiation by silencing pluripotency regulators, Oct4, Sox2 and Nanog directly through the regulation of DGCR8. I found that DGCR8 restoration resulted in repression of Oct4, Sox2 and Nanog in ΔNp63-/- epidermal cells and rescue differentiation defects. Loss of ΔNp63 resulted in pluripotency that caused defect in proper differentiation and stem cell like phenotype. This led me to culture the ΔNp63-/- epidermal cells in neuronal cell culture media in order to address whether restoration of DGCR8 can transform epidermal cells to neuronal cells. I found that DGCR8 restoration resulted in a change in cell fate. I also found that miR470 and miR145 play a role in the induction of pluripotency by repressing Oct4, Sox2 and Nanog. This indicates that ΔNp63 induces terminal differentiation through the regulation of DGCR8.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The neuronal repressor REST (RE1-silencing transcription factor; also called NRSF) is expressed at high levels in mouse embryonic stem (ES) cells, but its role in these cells is unclear. Here we show that REST maintains self-renewal and pluripotency in mouse ES cells through suppression of the microRNA miR-21. We found that, as with known self-renewal markers, the level of REST expression is much higher in self-renewing mouse ES cells than in differentiating mouse ES (embryoid body, EB) cells. Heterozygous deletion of Rest (Rest+/-) and its short-interfering-RNA-mediated knockdown in mouse ES cells cause a loss of self-renewal-even when these cells are grown under self-renewal conditions-and lead to the expression of markers specific for multiple lineages. Conversely, exogenously added REST maintains self-renewal in mouse EB cells. Furthermore, Rest+/- mouse ES cells cultured under self-renewal conditions express substantially reduced levels of several self-renewal regulators, including Oct4 (also called Pou5f1), Nanog, Sox2 and c-Myc, and exogenously added REST in mouse EB cells maintains the self-renewal phenotypes and expression of these self-renewal regulators. We also show that in mouse ES cells, REST is bound to the gene chromatin of a set of miRNAs that potentially target self-renewal genes. Whereas mouse ES cells and mouse EB cells containing exogenously added REST express lower levels of these miRNAs, EB cells, Rest+/- ES cells and ES cells treated with short interfering RNA targeting Rest express higher levels of these miRNAs. At least one of these REST-regulated miRNAs, miR-21, specifically suppresses the self-renewal of mouse ES cells, corresponding to the decreased expression of Oct4, Nanog, Sox2 and c-Myc. Thus, REST is a newly discovered element of the interconnected regulatory network that maintains the self-renewal and pluripotency of mouse ES cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding Nanog’s Role in Cancer Biology Mark Daniel Badeaux Supervisory Professor Dean Tang, PhD The cancer stem cell model holds that tumor heterogeneity and population-level immortality are driven by a subset of cells within the tumor, termed cancer stem cells. Like embryonic or somatic stem cells, cancer stem cells are believed to possess self-renewal capacity and the ability to give rise to a multitude of varieties of daughter cell. Because of cancer’s implied connections to authentic stem cells, we screened a variety of prostate cancer cell lines and primary tumors in order to determine if any notable ‘stemness’ genes were expressed in malignant growths. We found a promising lead in Nanog, a central figure in maintaining embryonic stem cell pluripotency, and through a variety of experiments in which we diminished Nanog expression, found that it may play a significant role in prostate cancer development. We then created a transgenic mouse model in which we targeted Nanog expression to keratin 14-expressing in order to assess its potential contribution to tumorigenesis. We found a variety of developmental abnormalities and altered differentiation patterns in our model , but much to our chagrin we observed neither spontaneous tumor formation nor premalignant changes in these mice, but instead surprisingly found that high levels of Nanog expression inhibited tumor formation in a two-stage skin carcinogenesis model. We also noted a depletion of skin stem cell populations, which underlies the wound-healing defect our mice harbor as well. Gene expression analysis shows a reduction in c-Jun and Bmp5, two genes whose loss inhibits skin tumor development and reduces stem cell counts respectively. As we further explored Nanog’s activity in prostate cancer, it became apparent that the protein oftentimes was not expressed. Emboldened by the competing endogenous RNA (ceRNA) hypothesis, we identified the Nanog 3’UTR as a regulator of the tumor suppressive microRNA 128a (miR-128a), which includes known oncogenes such as Bmi1 among its authentic targets. Future work will necessarily involve discerning instances in which Nanog mRNA is the biologically relevant molecule, as well as identifying additional mRNA species which may serve solely as a molecular sink for miR-128a.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to the lack of regenerative capacity of the mammalian auditory epithelium, sensory hair cell loss results in permanent hearing deficit. Nevertheless, a population of tissue resident stem/progenitor cells has been recently described. Identification of methods to trigger their activity could lead to exploitation of their potential therapeutically. Here we validate the use of transgenic mice reporting cell cycle progression (FUCCI), and stemness (Lgr5-GFP), as a valuable tool to identify regulators of cell cycle re-entry of supporting cells within the auditory epithelium. The small molecule compound CHIR99021 was used to inhibit GSK3 activity. This led to a significant increase in the fraction of proliferating sphere-forming cells, labeled by the FUCCI markers and in the percentage of Lgr5-GFP + cells, as well as a selective increase in the fraction of S-G2-M cells in the Lgr5 + population. Using whole mount cultures of the organ of Corti we detected a statistically significant increment in the fraction of proliferating Sox2 supporting cells after CHIR99021 treatment, but only rarely appearance of novel MyoVIIa+/Edu + hair cells. In conclusion, these tools provide a robust mean to identify novel regulators of auditory organ regeneration and to clarify the contribution of stem cell activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor with poor prognosis due in part to drug resistance and high incidence of tumor recurrence. The drug resistant and cancer recurrence phenotype may be ascribed to the presence of glioblastoma stem cells (GSCs), which seem to reside in special stem-cell niches in vivo and require special culture conditions including certain growth factors and serum-free medium to maintain their stemness in vitro. Exposure of GSCs to fetal bovine serum (FBS) can cause their differentiation, the underlying mechanism of which remains unknown. Reactive oxygen species (ROS) play an important role in normal stem cell differentiation, but their role in affecting cancer stem cell fate remains unclear. Whether the metabolic characteristics of GSCs are different from other glioblastoma cells and can be targeted are also unknown. In this study, we used several stem-like glioblastoma cell lines derived from clinical tissues by typical neurosphere culture system or orthotopic xenografts, and showed that addition of fetal bovine serum to the medium induced an increase of ROS, leading to aberrant differentiation and decreases of stem cell markers such as CD133. We found that exposure of GSCs to serum induced their differentiation through activation of mitochondrial respiration, leading to an increase in superoxide (O2-) generation and a profound ROS stress response manifested by upregulation of oxidative stress response pathway. This increase in mitochondrial ROS led to a down-regulation of molecules including SOX2, and Olig2, and Notch1 that are important for stem cell function and an upregulation of mitochondrial superoxide dismutase SOD2 that converts O2- to H2O2. Neutralization of ROS by antioxidant N-acetyl-cysteine in the serum-treated GSCs suppressed the increase of superoxide and partially rescued the expression of SOX2, Olig2, and Notch1, and prevented the serum-induced differentiation phenotype. Additionally, GSCs showed high dependence on glycolysis for energy production. The combination of a glycolytic inhibitor 3-BrOP and a chemotherapeutic agent BCNU depleted cellular ATP and inhibited the repair of BCNU-induced DNA damage, achieving strikingly synergistic killing effects in drug resistant GSCs. This study uncovers the metabolic properties of glioblastoma stem cells and suggests that mitochondrial function and cellular redox status may profoundly affect the fates of glioblastoma stem cells via a ROS-mediated mechanism, and that the active glycolytic metabolism in cancer stem cells may provide a biochemical basis for developing novel therapeutic strategies to effectively eliminate GSCs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tumor Suppressor Candidate 2 (TUSC2) is a novel tumor suppressor gene located in the human chromosome 3p21.3 region. TUSC2 mRNA transcripts could be detected on Northern blots in both normal lung and some lung cancer cell lines, but no endogenous TUSC2 protein could be detected in a majority of lung cancer cell lines. Mechanisms regulating TUSC2 protein expression and its inactivation in primary lung cancer cells are largely unknown. We investigated the role of the 5’- and 3’-untranslated regions (UTRs) of the TUSC2 gene in the regulation of TUSC2 protein expression. We found that two small upstream open-reading frames (uORFs) in the 5’UTR of TUSC2 could markedly inhibit the translational initiation of TUSC2 protein by interfering with the “scanning” of the ribosome initiation complexes. Site-specific stem-loop array reverse transcription-polymerase chain reaction (SLA-RT-PCR) verified several micoRNAs (miRNAs) targeted at 3’UTR and directed TUSC2 cleavage and degradation. In addition, we used the established let-7-targeted high mobility group A2 (Hmga2) mRNA as a model system to study the mechanism of regulation of target mRNA by miRNAs in mammalian cells under physiological conditions. There have been no evidence of direct link between mRNA downregulation and mRNA cleavages mediated by miRNAs. Here we showed that the endonucleolytic cleavages on mRNAs were initiated by mammalian miRNA in seed pairing style. Let-7 directed cleavage activities among the eight predicted potential target sites have varied efficiency, which are influenced by the positional and the structural contexts in the UTR. The 5’ cleaved RNA fragments were mostly oligouridylated at their 3’-termini and accumulated for delayed 5’–3’ degradation. RNA fragment oligouridylation played important roles in marking RNA fragments for delayed bulk degradation and in converting RNA degradation mode from 3’–5’ to 5’–3’ with cooperative efforts from both endonucleolytic and non-catalytic miRNA-induced silencing complex (miRISC). Our findings point to a mammalian miRNA-mediated mechanism for the regulation of mRNA that miRNA can decrease target mRNA through target mRNA cleavage and uridine addition

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MicroRNAs play roles in various biological processes like development, tumorigenesis, metastasis and pluripotency. My thesis work has demonstrated roles for p63, a p53 family member, in the upstream regulation of microRNA biogenesis. The p63 gene has a complex gene structure and has multiple isoforms. The TAp63 isoforms contain an acidic transcription activation domain. The ΔNp63 isoforms, lack the TA domain, but have a proline rich region critical for gene transactivation. To understand the functions of these isoforms, the Flores lab generated TAp63 and ΔNp63 conditional knock out mice. Using these mice and tissues and cells from these mice we have found that TAp63 transcriptionally regulates Dicer while ΔNp63 transcriptionally regulates DGCR8. TAp63 -/- mice are highly tumor prone. These mice develop metastatic mammary adenocarcinomas, squamous cell carcinomas, and lung adenocarcinomas to distant sites including the liver, lungs, and brain. I found that TAp63 suppresses metastasis by transcriptionally activating Dicer. TAp63 and Dicer levels were very low or lost in high grade human tumors like mammary adenocarcinomas, squamous cell carcinomas, and lung adenocarcinomas. Expression of Dicer in these tumor cell lines reduced their invasiveness. Using ΔNp63 -/- mice, I found that ΔNp63 transcriptionally activates DGCR8, resulting in a miRNA profile that is critical to reprogram cells to pluripotency. Analysis of epidermal cells derived from ΔNp63 -/- mice revealed that these cells expressed markers of pluripotency, including Sox2, Oct 4 and Nanog; however, genome-wide analysis revealed a novel profile of genes that are common between ΔNp63 -/- epidermal cells and embryonic stem cells. I also found that mouse cells depleted of ΔNp63 form chimeric mice and teratomas in SCID mice, demonstrating that ΔNp63 deficient cells are pluripotent. Further, I found that restoration of DGCR8 in ΔNp63 -/- epidermal cells reduces their pluripotency and induces terminal differentiation. I also demonstrated that iMS (induced multipotent stem) cells could be generated using human keratinocytes by knockdown of ∆Np63 or DGCR8. Taken together, my work has placed p63 and its isoforms at a critical node in controlling miRNA biogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As células-tronco podem ser isoladas tanto de tecidos embrionários quanto de tecidos provenientes de um organismo adulto. Este projeto teve por objetivo caracterizar, descrever as células derivadas da região uterina e da cinta placentária junção materno/fetal da placenta de carnívoros domésticos (cães e gatos), e verificar a sua capacidade de pluripotência. Os úteros gestantes e não gestantes foram obtidos em campanhas de castrações e de controle populacional de cães e gatos, na cidade de Pirassununga/SP. Foram coletados 24 úteros gravídicos de animais hígidos, em diferentes idades gestacionais. O material foi dividido em três fases distintas da gestação, ou seja inicio que compreende de 8 a 20 dias de gestação; meio de 21 a 30 dias de gestação e final de 31 a 60 dias de gestação. O material foi coletado de fêmeas caninas e felinas, quatro úteros de cada fase, totalizando 12 úteros de cães e 12 de felinos. Coletamos também 8 úteros de fêmeas nulíparas (4 de cadelas e 4 de gatas) e 8 úteros com um mês pós parto (4 de cadelas e 4 de gatas). As amostras foram fixadas em paraformoldeido tamponado a 4% para a análise histológica e de imunohistoquimica. Para a padronização da imunohistoquimica inúmeros testes de marcação e diluição dos anticorpos utilizados nesta pesquisa foram realizados, todo protocolo aqui descrito foi padronizado pela primeira vez. Nas análises de imunohistoquimica avaliamos a expressão de marcadores associados a células-tronco pluripotentes Nanog, Oct4 e Sox2. Nas cadelas, as marcações foram positivas em todas as fases, gestacionais e não gestacionais. A detecção dessas proteínas nesta espécie ficaram padronizadas, destacando algumas diferenças quantitativas durante alguns períodos da gestação. Foi observado que o Oct4 na cadela, mostra uma diferença significativa (p=0,0064), entre as fases de início e meio da gestação e entra o início e a fase de termo. Quando comparados os resultados das análises imunohistoquimicas utilizando os três anticorpos entre si, nos três períodos gestacionais ficou evidente uma diferença (p=0,0005) somente relativa a proteína Nanog com Oct4. Nas gatas apenas foi possível padronizar o protocolo do Nanog e do Sox2, sendo a marcação feita com Oct4 negativa. Nesta espécie foi possível observar uma diferença da proteína Nanog (p=0,0006) quando comparada na fase inicial para a fase do meio e início da gestação para a fase termo. No que se refere as fêmeas nulíparas e fêmeas pós-parto destaca-se a ausência de diferenças quando comparados os anticorpos na fase pós parto tanto em cadelas quanto em gatas. Na fase nulípara foram observadas diferenças somente na cadela (p=0,0018) para os três anticorpos. Desta forma, a caracterização de células de origem placentária com característica de células tronco pode abrir um leque de possibilidades para obtenção destas células de forma mais ética, uma vez que este material é descartado na castrações. Foi possível a identificação das células que expressão proteínas pluripotentes em diferentes idades gestacionais, tanto na região de cinta placentária como no útero. Apesar de semelhantes, as espécies aqui estudadas apresentaram diferenças na realização do protocolo da imunihistoquímica. Pesquisas relacionadas com as células-tronco do endométrio vêm crescendo, principalmente porque estas células podem ser facilmente obtidas, a partir de fontes descartadas, sem entraves éticos. Desta forma tem o potencial de serem uma nova fonte para o desenvolvimento na terapêutica como terapia celular

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A possibilidade de repor células perdidas em doenças neurodegenerativas através de transplantes com células-troncos das mais diversas fontes vem sendo amplamente estudada. As células-tronco adultas (CTA) podem ser facilmente isoladas e sua utilização na pesquisa não envolve questões éticas e religiosas. Além disso, estas células são menos propícias à transformação tumoral do que células-tronco embrionárias, outra importante fonte de células para terapias celulares. No entanto, as CTA são, em estados fisiológicos, restritas a geração de células dos seus tecidos de origem, o que poderia limitar a sua utilização. Porém, nos últimos anos, uma série de técnicas vem sendo descritas com o objetivo de reverter tais limitações. Neste trabalho, nós investigamos a capacidade das células-tronco mesenquimais adultas, isoladas de camundongos ou do cordão umbilical humano, serem induzidas a adquirir um fenótipo neuronal de forma direta, sem passar por um estágio de célula progenitora ou pluripotente, através da reprogramação genética com genes pró-neurais. Nossos resultados indicam que tanto células-tronco mesenquimais adultas murinas quanto humanas podem ser reprogramadas em neurônios após a expressão combinada de Sox2 e Ascl1 ou Sox2 e Neurog2. As células reprogramadas exibem morfologias compatíveis com o fenótipo neuronal, expressam proteínas típicas de neurônios maduros, apresentam a capacidade de gerar potenciais de ação repetitivos e formam conexões sinápticas com outros neurônios presentes no cultivo. Portanto, nosso trabalho apresenta a primeira evidência de reprogramação direta de células-tronco mesenquimais humanas em neurônios funcionais.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diffuse intrinsic pontine glioma (DIPG) is a rare and incurable brain tumor that arises predominately in children and involves the pons, a structure that along with the midbrain and medulla makes up the brainstem. We have previously developed genetically engineered mouse models of brainstem glioma using the RCAS/Tv-a system by targeting PDGF-B overexpression, p53 loss, and H3.3K27M mutation to Nestin-expressing brainstem progenitor cells of the neonatal mouse. Here we describe a novel mouse model targeting these same genetic alterations to Pax3-expressing cells, which in the neonatal mouse pons consist of a Pax3+/Nestin+/Sox2+ population lining the fourth ventricle and a Pax3+/NeuN+ parenchymal population. Injection of RCAS-PDGF-B into the brainstem of Pax3-Tv-a mice at postnatal day 3 results in 40% of mice developing asymptomatic low-grade glioma. A mixture of low- and high-grade glioma results from injection of Pax3-Tv-a;p53(fl/fl) mice with RCAS-PDGF-B and RCAS-Cre, with or without RCAS-H3.3K27M. These tumors are Ki67+, Nestin+, Olig2+, and largely GFAP- and can arise anywhere within the brainstem, including the classic DIPG location of the ventral pons. Expression of the H3.3K27M mutation reduces overall H3K27me3 as compared with tumors without the mutation, similar to what has been previously shown in human and mouse tumors. Thus, we have generated a novel genetically engineered mouse model of DIPG, which faithfully recapitulates the human disease and represents a novel platform with which to study the biology and treatment of this deadly disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

FKBPL and its peptide derivatives have already demonstrated well-established inhibitory effects on cancer growth and CD44-dependent anti-angiogenic activity. Since cancer stem cells (CSCs) are CD44 positive, we wanted to explore if these therapeutics could specifically target CSCs in breast and ovarian cancer. In a tumoursphere assay, FKBPL stable overexpression or FKBPL-based peptide (AD-01, preclinical peptide or ALM201, clinical peptide candidate) treatment were highly effective at reducing the CSC population measured by inhibiting tumoursphere forming efficiency in breast and ovarian cancer cell lines and primary breast cancer samples from both solid breast tumours and pleural effusions. Flow cytometry, to assess the ESA+/CD44+/CD24- and ALDH+ cell subpopulations representative of CSCs, validated these results. The ability of AD-01 and ALM201 to inhibit the self-renewal capacity of CSCs was confirmed across three generations, eradicating CSC completely by the third generation (p<0.001). Furthermore, clonogenic assay demonstrated that FKBPL-based peptides mediated CSC differentiation, with a significant decrease in the number of CSCs or holoclones and an associated increase in differentiated cancer cells or meroclones/paraclones. In addition, AD-01 treatment in vitro and in vivo led to a significant reduction in the stem cell markers, Nanog, Sox2 and Oct4 protein and mRNA levels; whilst transfection of FKBPL-targeted siRNAs led to an increase in these markers and in tumoursphere forming potential, highlighting the endogenous role of FKBPL in stem cell signalling. The clinical relevance of this was confirmed using a publically available microarray data set (GSE7390), where, high FKBPL and low Nanog expression were independently associated with improved overall survival in breast cancer patients (log rank test p=0.03; hazard ratio=3.01). Additionally, when AD-01 was combined with other agents, we observed additive activity with the Notch inhibitor, DAPT and AD-01 was also able to abrogate a chemo- and radiotherapy induced enrichment in CSCs. Importantly, using gold standard in vivo limiting dilution assays we demonstrated a delay in tumour initiation and reoccurrence in AD-01 treated xenografts. In summary, FKBPL-based peptides appear to have dual anti-angiogenic and anti-CSC activity which will be advantageous as this agent enters clinical trial.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L’échec des différents essais cliniques souligne la nécessité de développer des nouvelles thérapies pour la maladie d’Alzheimer (MA), la cause la plus commune de démence. Les microARNs (miARNs) sont les ARNs non-codants les plus étudiés et ils jouent un rôle important dans la modulation de l’expression des gènes et de multiples voies de signalisation. Des études antérieures, dont celles de mon laboratoire d’accueil, ont permis de développer l’hypothèse que certains membres de la famille miR-15/107 (c.-à-d. miR-15ab, miR-16, miR-195, miR-424, and miR-497) pourraient être utilisés comme agents thérapeutiques dans MA. En effet, cette famille avait le potentiel de réguler de multiples gènes associés à MA, tels que la protéine précurseur de l’amyloïde (APP), la β-secrétase (BACE1), et la protéine Tau. Tel que démontré dans ce projet de thèse, j’ai choisi miR-16 comme cible thérapeutique potentielle pour MA parmi tous les membres de la famille. L’essai luciférase dans ce projet confirme que miR-16 peut réguler simultanément APP et BACE1, directement par une interaction avec la région non-codante en 3’ de l’ARNm). Notamment, nous observons aussi une réduction de la production des peptides amyloïdes et de la phosphorylation de Tau après une augmentation de miR-16 en cellule. J’ai ensuite validé mes résultats in vivo dans la souris en utilisant une méthode de livraison de miR-16 via une pompe osmotique implanté dans le cerveau. Dans ce cas, l’expression des protéines d’intérêts (APP, BACE1, Tau) a été mesurée par immunobuvardage et PCR à temps réel. Après validation, ces résultats ont été complémentés par une étude protéomique (iTRAQ) du tronc cérébral et de l’hippocampe, deux régions associées à la maladie. Ces données m’ont permis d’identifier d’autres protéines régulées par miR-16 in vivo, incluant α-Synucléine, Transferrine receptor1, et SRm300. Une autre observation intéressante : les voies régulées par miR-16 in vivo sont directement en lien avec le stress oxydatif et la neurodégénération. En résumé, ce travail démontre l’efficacité et la faisabilité d’utiliser un miARN comme outil thérapeutique pour la maladie d’Alzheimer. Ces résultats rentrent dans un cadre plus vaste de découvrir de nouvelles cibles pour MA, et en particulier la forme sporadique de la maladie qui représente plus de 95% de tous les cas. Évidemment, la découverte d’une molécule pouvant cibler simultanément les deux pathologies de la maladie (plaques amyloïdes et hyper phosphorylation de tau) est nouvelle et intéressante, et ce domaine de recherche ouvre la porte aux autres petits ARNs non-codants dans MA et les maladies neurodégénératives connexes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The generation of neurons from neural stem cells requires large-scale changes in gene expression that are controlled to a large extent by proneural transcription factors, such as Ascl1. While recent studies have characterized the differentiation genes activated by proneural factors, less is known on the mechanisms that suppress progenitor cell identity. Here, we show that Ascl1 induces the transcription factor MyT1 while promoting neuronal differentiation. We combined functional studies of MyT1 during neurogenesis with the characterization of its transcriptional program. MyT1 binding is associated with repression of gene transcription in neural progenitor cells. It promotes neuronal differentiation by counteracting the inhibitory activity of Notch signaling at multiple levels, targeting the Notch1 receptor and many of its downstream targets. These include regulators of the neural progenitor program, such as Hes1, Sox2, Id3, and Olig1. Thus, Ascl1 suppresses Notch signaling cell-autonomously via MyT1, coupling neuronal differentiation with repression of the progenitor fate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La alta capacidad del genoma del cloroplasto para integrar y expresar transgenes en altos niveles, hace de la tecnología transplastómica una buena opción para producir proteínas de interés. Este reporte presenta la expresión estable de una pectinasa (gen PelA), una β-glucosidasa (gen Bgl1), dos celulasas (genes CelA y CelB) y la primer expresión estable de una manganeso peroxidasa (gen MnP-2) en el genoma de cloroplastos de tabaco. Se construyeron seis vectores: pES4, pES5, pES6, pHM4, pHM5 y pHM6 derivados de pPRV111A conteniendo los genes sintéticos PelA, MnP- 2, Bgl1, CelA-CelB, CelA y CelB, respectivamente. Los genes se flanquearon por un promotor sintético del gen rrn16S y una secuencia sintética 3’UTR del gen rbcL. La integración en la región intergénica rrn16S y 3'rps12 se confirmó por análisis de Southern blot. El procesamiento estable de los transcritos se confirmó por un análisis de Northern blot. Se realizó un análisis enzimático para detectar la expresión y funcionalidad de las enzimas recombinantes, las plantas maduras mostraron mayor actividad comparado con plantas de tipo silvestre. Las plantas transplastómicas exhibieron 58.5% más actividad de pectinasa a pH neutro y a 60°C, mientras que manganeso peroxidasa mostró alta actividad a pH 6 y 65°C; en el caso de las celulasas, todas las enzimas mostraron mayor actividad a pH 5 (β-glucosidasa: 30.45 xviii U/mg, CelA-CelB 58 U/mg, CelA 49.10 U/mg y CelB 48.72 U/mg) a 40°C para β- glucosidasa y 65°C para celulasas. Las plantas transplastómicas mostraron un desarrollo similar a las plantas de tipo silvestre; sin embargo, la línea pHM4 mostró fenotipos variegados en hojas. Los análisis mostraron que los genes de enzimas hidrolíticas PelA, MnP-2, Bgl1, CelA-CelB, CelA y CelB pueden integrarse y expresarse en el genoma de cloroplastos con alta actividad; de este modo, debido a que una planta madura en promedio cuenta con ~ 470 g de biomasa, es posible producir 66,676.25 unidades de pectinasa, 21,715.46 unidades de manganeso peroxidasa, 338,081.0 unidades de celulasas A-B, 231,456.7 unidades de celulasa A, 206,669.8 unidades de celulasa B y 139,395.0 unidades de β-glucosidasa por planta. Este estudio sustenta información sobre métodos y estrategias de expresión de enzimas hidrolíticas con potencial aplicación biotecnológica utilizando plantas transplastómicas.