976 resultados para Southwest Florida
Resumo:
A detailed study of the geology and ground-water resources of Manatee County (fig. 1) was made during the period from 1950 to 1955. This report contains a table of well records that was compiled from data collected during that investigation. The well-numbering system used in the table is based on latitude and longitude. (PDF contains 204 pages.)
Resumo:
The principal sources of surface-water supplies inBaker County are the St. Marys River and its tributaries. However, the flow of many of the small tributaries is intermittent, and without storage they are not dependable sources of supply during sustained periods of deficient rainfall. Of the six stream-gaging stations in Baker County for which complete records are available, one has been in operation for 31 years and provides a long-term record upon which to base correlative estimates for extending the short-term records at the other stations. All available streamflow data to 1957 have been summarized in graphic or tabular form. The hydrologic balance between minimum streamflows and increased evaporation losses afforded by potential shallow reservoirs provides design criteria for determining the maximum surface area of effective reservoir that can be created at a selected site within Baker County. This information has been presented in graphic and tabular form in the report. (PDF has 37 pages.)
Resumo:
This report published as Information Circular No. 21, together with the interim report published in 1957 as Information Circular No. 10, Florida Geological Survey, illustrates as completely as possible the situation that now exists among the freely flowing wells of the State. (PDF contains 40 pages.)
Resumo:
A detailed study of the geology and ground-water resources of the Ruskin area (fig. 1) was made during the period from 1950 to 1955, by the U. S. Geological Survey in cooperation with the Florida Geological Survey and the Board of County Commissioners of Hillsborough County. The results of this study are given in a report by Harry M. Peek entitled "The artesian water of the Ruskin area of Hillsborough County, Florida" and published by the Florida Geological Survey as Report of Investigations No. 21. This report contains tables of well records that were compiled from data collected during that investigation. The well-numbering system used in the tables is based on latitude and longitude. (PDF contains 88 pages.)
Resumo:
A detailed study of the geology and ground-water resources of Volusia County, on the eastern coast of Florida (fig. 1), was made during the period 1953-57 by the U. S. Geological Survey in cooperation with the Florida Geological Survey and the cities of Daytona Beach, New Smyrna Beach, and Port Orange. The results of this study have been published by the Florida Geological Survey in the following reports: Information Circular No. 8, entitled "Interim Report on Ground-Water Resources of Northeastern Part of Volusia County, Florida, " by Granville G. Wyrickand Willard P. Leutze;, and Report of Investigations No. 22, entitled "Ground-Water Resources of Volusia County, Florida, " by Granville G. Wyrick. This report contains a table of well records that was compiled from data collected during that investigation. longitude. (PDF contains 100 pages.)
Resumo:
The rapid increase in population in Polk County during the last decade has been accompanied by a several-fold increase in the number and complexity of problems pertaining tothe use andcontrolof the streams andlakes of the county. The increase in problems has increased the need for more information about the occurrence and movement of surface water. The primary purpose of this report is to give that information. Its secondary purpose is to give information that will promote an understanding of the nature and causes of the problems or that will aid in arriving at practical solutions. (PDF contains 133 pages.)
Resumo:
The Green Swamp area in central Florida is another area where man is developing agricultural land from marginal land. Though the area is by no means as extensive as that of the Everglades, the present efforts for its development are similar to the early efforts for developing the Everglades in that many miles of canals and ditches have been constructed to improve the drainage. Lest the early mistakes of the Everglades be repeated, the Florida Department of Water Resources considered that an appraisal of the physical and hydrologic features of the area was needed to determine the broad effects of draining and developing the swamp. This reconnaissance provides information required by the State of Florida for determining its responsibility and policy in regard to the Green Swamp area and for formulating future plans for water management of the area. Some of the features that have been determined are: the amount of rainfall on the area; the pattern of surfacewater drainage; the amount and direction of surface-water runoff; the direction of ground-water movement; the interrelationship of rainfall, surface water, and ground water; the effects of improved drainage facilities'; and the effects of the hydrologic environment on the chemical quality of water of the area.(PDF contains 106 pages.)
Resumo:
Practically all water for municipal and industrial use in the Fernandina area is supplied by artesian wells. In recent years, the use of artesian water in the area has increased to meet the needs of expanding industry and increasing population. The total industrial and municipal pumpage has increased from approximately 35 million gallons per day in 1941 to approximately 50 million gallons per day in 1959. Correlated with the increase in water use is the constant decline in the artesian pressure in the area. In many other areas in Florida, such a decline in artesian pressure has resulted in salt-water intrusion into the fresh-water supply.An intrusion of salt water in the Fernandina area would contaminate the existing fresh-water supply and would result in a hardship for the population and seriously injure the economy. Recognizing the threat to the fresh-water supplies of this area, the U. S. Geological Survey in cooperation with the Florida Geological Surveymade a reconnaissance to determineif there has been any intrusion of salt water into the fresh-water supply or if there is any danger of future intrusion. (PDF contains 28 pages.)
Resumo:
Thousands of hectares of native plants and shallow open water habitat have been displaced in Lake Okeechobee’s marsh by the invasive exotic species torpedograss ( Panicum repens L.). The rate of torpedograss expansion, it’s areal distribution and the efficacy of herbicide treatments used to control torpedograss in the lake’s marsh were quantified using aerial color infra red (IR) photography.(PDF has 6 pages.)
Resumo:
Burial and removal techniques with seed bags were used to examine the viability and longevity of Melaleuca quinquenervia seeds at four field sites representing different soil types and hydrological conditions in South Florida. Seed viability was determined over different burial durations in the soil through a combination of germination tests and 2,3,5-triphenyl- tetrazolium chloride (TTC) treatments. Control seeds kept dry at 25 C in the laboratory maintained same viability of ca. 15% over the 3-year study. In the field, seed viability decreased with increased burial duration.(PDF has 4 pages.)
Resumo:
Common salvinia (Salvinia minima Baker) is an exotic floating fern that has been in the U.S. from at least 1928(Small 1931). Its pest status in Florida is less clear perhaps due to the presence of the specialized herbivore Cyrtobagous salviniae (Coleoptera: Curculionidae). Our objective was to sample populations of adult C. salviniae in south Florida in order to assess temporal abundance and estimate density on common salvinia. (PDF has 4 pages.)
Resumo:
There is strong evidence to suggest that ground-water nitrate concentrations have increased in recent years and further increases are expected along portions of the central Gulf coast of Florida. Much of the nitrate enriched groundwater is discharged into surface waters through numerous freshwater springs that are characteristic of the area and the potential for eutrophication of their receiving waters is a legitimate concern. To test the potential effects of elevated nutrient concentrations on the periphyton community an in situ nutrient addition experiment was conducted in the spring-fed Chassahowitzka River, FL, USA, during the summer of 1999. Plastic tubes housing arrays of glass microscope slides were suspended in the stream. Periphyton colonizing the microscope slides was subjected to artificial increases in nitrogen, phosphorus or a combination of both. Slides from each tube were collected at 3- to 4- day intervals and the periphyton communities were measured for chlorophyll concentration. The addition of approximately 10 μg/L of phosphate above ambient concentrations significantly increased the amount of periphyton on artificial substrates relative to controls; the addition of approximately 100 μg/L of nitrate above ambient concentrations did not. The findings from this experiment implicated phosphorus, rather than nitrogen, as the nutrient that potentially limits periphyton growth in this system.(PDF contains 4 pages.)
Resumo:
This report responds to the 1986 Beaches Bill which, in recognition of the potential deleterious impact on Florida's beaches of inlets modified for navigation, mandated a study of those inlets with identification of recommended action to reduce the impacts. This report addresses west Coast inlets; East Coast inlets are the subject of a companion report. There are 37 inlets along that portion of Florida's West Coast commencing from Pensacola Bay Entrance to Caxambas Pass at the south end of Marco Island. Compared to those on the East Coast, most West Coast inlets have not had the deleterious effects on the adjacent beaches, yet all modified inlets without proper management have the potential of impacting unfavorably on the adjacent shorelines. Moreover, at present there is interest in opening three West Coast entrances which either have been open in the past (Midnight Pass) or which have opened occasionally (Navarre Pass and Entrance to Phillips Lake). A review of inlets in their natural condition demonstrates the presence of a shallow broad outer bar across which the longshore transport Occurs. These shallow and shifting bar features were unsuitable for navigation which in many cases has led to the deepening of the channels and fixing with one or two jetty structures. Inlets in this modified state along with inappropriate maintenance practices have the potential of placing great ero$ional stress along the adjacent beaches. Moreover. channel dredging can reduce wave sheltering of the shoreline by ebb tidal shoals and alter the equilibrium of the affected shoreline segments. The ultimate in poor sand management practice is the placement of good quality beach sand in water depths too great for the sand to reenter the longshore system under natural forces; depths of 12 ft. or less are considered appropriate for Florida in order to maintain the sand in the system. With the interference of the nearshore sediment transport processes by inlets modified for navigation, if the adjacent beaches are to be stabilized there must be an active monitoring program with commitment to placement of dredged material of beach quality on shoreline segments of documented need. Several East Coast inlets have such transfer facilities; however. the quantities of sand transferred should be increased. Although an evolution and improvement in the technical capability to manage sand resources in the vicinity of inlets is expected, an adequate capability exists today and a concerted program should be made to commence a scheduled implementation of this capability at those entrances causing greatest erosional stress on the adjacent shorelines. A brief summary review for each of the 37 West Coast inlets is presented including: a scaled aerial photograph, brief historical information, several items related to sediment losses at each inlet and special characteristics relevant to State responsibilities. For each inlet, where appropriate, the above infor~tion is utilized to develop a recommenced action. (PDF has 101 pages.)
Resumo:
We monitored litterfall biomass at six different sites of melaleuca (Melaleuca quinquenervia (Cav.) S.T. Blake) forested wetlands in South Florida from July 1997 to June 1999. Annual litterfall of melaleuca varied between sites from 6.5 to 9.9 t dry wt ha(-1) yr(1) over the two-year period. Litterfall was significantly higher (p < 0.0001) in scasonally flooded habitats (9.3 t ha(-1) yr(1)) than in non-flooded (7.5 t ha(-1) yr(1)) and permanently flooded habitats (8.0 t ha(-1) yr(1)). Leaf fall was the major component forming 70% of the total litter, woody material 16%, and reproductive material 11%. Phenology of flowering and leaf flush was investigated by examination of the timing and duration of the fall of different plant parts in the litter traps, coupled with monthly field observations during the two-year study. In both years, flowering began in October and November, with peak flowers production around December, and was essentially completed by February and March. New shoot growth began in mid winter after peak flowering, and extended into the spring. Very little new growth was observed in melaleuca forests during the summer months, from May to August, in South Florida. In contrast, the fall of leaves and small wood was recorded in every month of the year, but generally increased during the dry season with higher levels observed from February to April. Also, no seasonality was recorded in the fall of seed capsules, which apparently resulted from the continual self-thinning of small branches and twigs inside the forest stand. In planning management for perennial weeds, it is important to determine the period during its annual growth cycle when the plant is most susceptible to control measures. These phenological data suggest that the appropriate time for melaleuca control in South Florida might be during late winter and early spring, when the plant is most active.
Resumo:
Many Central Florida lakes, particularly those in the Kissimmee River watershed, are maintained 0.5 to 1.0 m lower than historic (pre-1960) levels during the summer hurricane season for flood control purposes. These lower water levels have allowed proliferation and formation of dense monotypic populations of pickerelweed ( Pontederia cordata L.) and other broadleaf species that out compete more desirable native grasses (Hulon, pers. comm., 2002). Due to the limited availability of data on the effects of metsulfuron methyl on wetland plants, particularly in Florida, the present study was carried out with the objective of testing its phytotoxicity on six wetland species, to determine the feasibility of its use for primary pickerelweed control.