950 resultados para Somatic hybridization
Resumo:
Intergeneric hybridization between the epinepheline serranids Cephalopholis fulva and Paranthias furcifer in waters off Bermuda was investigated by using morphological and molecular characters. Putative hybrids, as well as members of each presumed parent species, were analyzed for 44 morphological characters and screened for genetic variation at 16 nuclear allozyme loci, two nuclear (n)DNA loci, and three mitochondrial (mt)DNA gene regions. Four of 16 allozyme loci, creatine kinase (CK-B*), fumarase (FH*), isocitrate dehydrogenase (ICDH-S*), and lactate dehydrogenase (LDH-B*), were unique in C. fulva and P. furcifer. Restriction fragments of two nuclear DNA intron regions, an actin gene intron and the second intron in the S7 ribosomal protein gene, also exhibited consistent differences between the two presumed parent species. Restriction fragments of three mtDNA regions—ND4, ATPase 6, and 12S/16S ribosomal RNA—were analyzed to identify maternal parentage of putative hybrids. Both morphological data and nuclear genetic data were found to be consistent with the hypothesis that the putative hybrids were the result of interbreeding between C. fulva and P. furcifer. Mean values of 38 morphological characters were different between presumed parent species, and putative hybrids were intermediate to presumed parent species for 33 of these characters. A principal component analysis of the morphological and meristic data was also consistent with hybridization between C. fulva and P. furcifer. Thirteen of 15 putative hybrids were heterozygous at all diagnostic nuclear loci, consistent with F1 hybrids. Two putative hybrids were identified as post-F1 hybrids based on homozygosity at one nuclear locus each. Mitochondrial DNA analysis showed that the maternal parent of all putative hybrid individuals was C. fulva. A survey of nuclear and mitochondrial loci of 57 C. fulva and 37 P. furcifer from Bermuda revealed no evidence of introgression between the parent species mediated by hybridization.
Resumo:
The present experiment was designed to observe whether the nuclear volume and area are affected by the ploidy and hybrid status of the individual. Polyploidy was induced by heat shock treatment given at 44 ± 0.5°C for 30 seconds and 45 seconds which was found to be most effective (64.7%) for induction of triploidy in Cyprinus carpio. Cell and nuclear volume and cell and nuclear area varied significantly in triploid fishes as compared to those of controls. Triploid fishes showed significantly higher growth compared to diploid counterparts. It was also observed that catla x rohu hybrid and its parents showed significant difference in the nuclear volume and area of their erythrocytes. Except nuclear volume, all the parameters were significantly different between catla and catla x rohu hybrid. The hybrids showed a closer relationship with catla as compared to rohu.
Resumo:
Studies were conducted to observe the effects of different types of feeds on the gonado-somatic index (GSI) and fecundity of freshwater prawn Macrobrachium rogenbergii. Three different treatments (T1 T2 and T3) were designed with three types of feed as follows: (i) Saudi-Bangla Prawn feed 100% - T1 (ii) SaudiBangla prawn feed 50%+ local feed 50%- T2 and (iii) local feed 100%- T3. The results showed that the average value of gonado-somatic index (GSI) was 14.39, 14.35 and 14.36 and the average fecundity of M. rogenbergiiwas 99,741, 98,125 and 97,911 in T1 T2 and T3 respectively. No significant difference (p>00.5) was between gonado-somatic indices (GSI) and fecundities of M. rogenbergii among different feeding trails. The price of Saudi-Bangla prawn feed was very high (Tk. 23/kg) than the local feed (Tk. 14/kg). So, use of local feed was recommended for M. rogenbergii brood rearing.
Resumo:
The giant panda skeletal muscle cells, uterus epithelial cells and mammary gland cells from an adult individual were cultured and used as nucleus donor for the construction of interspecies embryos by transferring them into enucleated rabbit eggs. All the three kinds of somatic cells were able to reprogram in rabbit ooplasm and support early embryo development, of which mammary gland cells were proven to be the Lest, followed by uterus epithelial cells and skeletal muscle cells. The experiments showed that direct injection of mammary gland cell into enucleated rabbit ooplasm, combined with in vivo development in ligated rabbit oviduct, achieved higher blastocyst development than in vitro culture after the somatic cell was injected into the perivitelline space and fused with the enucleated egg by electrical stimulation. The chromosome analysis demonstrated that the genetic materials in reconstructed blastocyst cells were the same as that in panda somatic cells. In addition, giant panda mitochondrial DNA (mtDNA) was shown to exist in the interspecies reconstructed blastocyst. The data suggest that (i) the ability of ooplasm to dedifferentiate somatic cells is not species-specific; (ii) there is compatibility between interspecies somatic nucleus and ooplasm during early development of the reconstructed egg.
Resumo:
The complete mitochondrial genomes of the primary cancerous, matched paracancerous normal and distant normal tissues from 10 early-stage breast cancer patients were analyzed in this study, with special attempt (i) to investigate whether the reported high
Resumo:
BACKGROUND: Despite the potential utility of primate somatic cell nuclear transfer (SCNT) to biomedical research and to the production of autologous embryonic stem (ES) cells for cell- or tissue-based therapy, a reliable method for SCNT is not yet availab
Resumo:
BACKGROUND: Somatic cell nuclear transfer (SCNT) requires cytoplast-mediated reprogramming of the donor nucleus. Cytoplast factors such as maturation promoting factor are implicated based on their involvement in nuclear envelope breakdown (NEBD) and prema
Resumo:
Somatic cell nuclear transfer (SCNT) is a remarkable process in which a somatic cell nucleus is acted upon by the ooplasm via mechanisms that today remain unknown. Here we show the developmental competence (% blastocyst) of embryos derived from SCNT (21%)
Resumo:
As a part of an overall project on fishculture development techniques in Tanzania, hybridization between Tilapia zillii and Tilapia andersonii was carried out at the Freshwater Fisheries Institute, Nyegezi, Tanzania. T. andersonii, a plankton feeder, is not indigenous to Tanzania but was introduced in 1968 from Zambia for certain specific purpose. T. zillii, a macrovegetation feeder, is present locally and is common. In the present studies T. zillii (245.0 mm/260.0 g) female was hybridized with T. andersonii (288.0 mm/350.0 g) male. Under cement cistern conditions it was only after about four months of acclimatization that hybridization between the two occurred. About 1,637 interspecific hybrid fry were produced in a single brood. Eggs were adhesive and parental care shown by the female, the male being driven away. Growth under cistern conditions was slow, attaining a size of 134.8 mm/44.3 g in 10 months. But this growth rate need not be taken as ideal. In body shape, colouration and other morphometric characters the hybrids had inherited from both parents. The number of gill rakers among the hybrids was eighteen which was intermediate between T. zillii (12) and T. andersonii (27). Among one hundred and seventy two specimens (106.0 mm - 168.0 mm) cut and examined the sex ration was hundred per cent males and all of them were between II and IV stages of maturity. This is the first report of fish hybridization from Tanzania and possibly the first report on hybridization between T. zillii and T. andersonii. The full significanoe of the findings and its role in African fishculture is discussed.
Resumo:
Artificial interspecific hybrids between large scale loach P. dabryanus and tetraploid pond loach M. anguillicaudatus (Cobitidae, Cypriniformes) are viable. To detect the occurrence of possible natural hybridization, genetic analyses by using microsatellite markers were performed for natural populations of large scale loach and pond loach, the reciprocal laboratory hybrids, and "supposed hybrids" with ambiguous morphology. The fertility of the artificial hybrids was also tested. At one diagnostic microsatellite (Mac50), one out of 20 "supposed hybrids" was identified to be F-1 hybrid between the two loach species because it had the same genotype as that of the laboratory hybrids. The triploid hybrids between the two species were confirmed to be female-sterile. The results show that rare hybridization has occurred between diploid large scale loach and tetraploid pond loach in nature although it may have little effect in genetic introgression. This study is helpful for fish conservation and encourages further investigation on natural hybridization and introgression of loaches.
Resumo:
By differential screening, we cloned the CagCNBP, demonstrated its predominant expression in ovary and testis, and reported its development behavior during folliculogenesis and oogenesis by immunofluorescence localization (Liu and Gui, Gene 365:181-192, 2005), but its developmental behavior during spermatogenesis and its transcript distribution during embryogenesis are not revealed. In the present study, by in situ hybridization, we analyze CagCNBP expression pattern during gibel carp embryogenesis. The CagCNBP transcripts ubiquitously distributed in all embryonic cells in early developmental stage embryos, and peak in midbrain, hindbrain and somites of gibel carp larva during organogenesis. By antibody detection, we reveal CagCNBP protein distribution change during spermatogenesis. The cell-specific distribution of CagCNBP is revealed by immunofluorescence staining, and predominant CagCNBP expression in testis somatic cells and spermatogonia is demonstrated in this paper. For the first time, the CNBP distribution during spermatogenesis in vertebrate has been revealed.
Resumo:
Partial rDNA sequences of Prorocentrum minimum and Takayama pulchella were amplified, cloned and sequenced. and these sequence data were deposited in the GenBank. Eight oligonucleotide probes (DNA probes) were designed based on the sequence analysis. The probes were employed to detect and identify P. minimum and T. pulchella in unialgal and mixed algal samples with a fluorescence in situ hybridization method using flow cytometry. Epifluorescence micrographs showed that these specific probes labeled with fluorescein isothiocyanate entered the algal cells and bound to target sequences, and the fluorescence signal resulting from whole-cell hybridization varied from probe to probe. These DNA probes and the hybridization protocol we developed were specific and effective for P. minimum and T. pulchella, without any specific binding to other algal species. The hybridization efficiency of different probes specific to P. minimum was in the order: PM18S02 > PM28S02 > PM28S01 > PM18S01, and that of the probes specific to T. pulchella was TP18S02 > TP28S01 > TP28S02 > TP18S01. The different hybridization efficiency of the DNA probes could also be shown in the fluorescent signals between the labeled and unlabeled cells demonstrated using flow cytometry. The DNA probes PM18S02, PM28S02; TP18S02 and TP28S01, and the protocol, were also useful for the detection of algae in natural samples.