900 resultados para Solar power


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, a detailed thermodynamic performance analysis of a transcritical condensing (TC) cycle is performed with pure CO2 and a blend of 48.5 % propane with 51.5 % CO2 as working fluids. A realistic thermodynamic model is used incorporating irreversibilities in turbo-machineries and heat exchangers. The Key finding is that the addition of propane elevates the heat rejection temperature, but does not impair any of the performance indicators. Such a fluid may be useful for power generation in concentrated solar power applications by using which a hike of up to 2 % can be realized in the thermal efficiency of a power plant.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper establishes the design requirements for the development and testing of direct supercritical carbon dioxide (sCO2) solar receivers. Current design considerations are based on the ASME Boiler and Pressure Vessel Code (BPVC). Section I (BPVC) considers typical boilers/superheaters (i.e. fired pressure vessels) which work under a constant low heat flux. Section VIII (BPVC) considers pressure vessels with operating pressures above 15 psig 2 bar] (i.e. unfired pressure vessels). Section III, Division I - Subsection NH (BPVC) considers a more detailed stress calculation, compared to Section I and Section VIII, and requires a creep-fatigue analysis. The main drawback from using the BPVC exclusively is the large safety requirements developed for nuclear power applications. As a result, a new set of requirements is needed to perform detailed thermal-structural analyses of solar thermal receivers subjected to a spatially-varying, high-intensity heat flux. The last design requirements document of this kind was an interim Sandia report developed in 1979 (SAND79-8183), but it only addresses some of the technical challenges in early-stage steam and molten-salt solar receivers but not the use of sCO2 receivers. This paper presents a combination of the ASME BPVC and ASME B31.1 Code modified appropriately to achieve the reliability requirements in sCO(2) solar power systems. There are five main categories in this requirements document: Operation and Safety, Materials and Manufacturing, Instrumentation, Maintenance and Environmental, and General requirements. This paper also includes the modeling guidelines and input parameters required in computational fluid dynamics and structural analyses utilizing ANSYS Fluent, ANSYS Mechanical, and nCode Design Life. The main purpose of this document is to serve as a reference and guideline for design and testing requirements, as well as to address the technical challenges and provide initial parameters for the computational models that will be employed for the development of sCO(2) receivers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The sun has the potential to power the Earth's total energy needs, but electricity from solar power still constitutes an extremely small fraction of our power generation because of its high cost relative to traditional energy sources. Therefore, the cost of solar must be reduced to realize a more sustainable future. This can be achieved by significantly increasing the efficiency of modules that convert solar radiation to electricity. In this thesis, we consider several strategies to improve the device and photonic design of solar modules to achieve record, ultrahigh (> 50%) solar module efficiencies. First, we investigate the potential of a new passivation treatment, trioctylphosphine sulfide, to increase the performance of small GaAs solar cells for cheaper and more durable modules. We show that small cells (mm2), which currently have a significant efficiency decrease (~ 5%) compared to larger cells (cm2) because small cells have a higher fraction of recombination-active surface from the sidewalls, can achieve significantly higher efficiencies with effective passivation of the sidewalls. We experimentally validate the passivation qualities of treatment by trioctylphosphine sulfide (TOP:S) through four independent studies and show that this facile treatment can enable efficient small devices. Then, we discuss our efforts toward the design and prototyping of a spectrum-splitting module that employs optical elements to divide the incident spectrum into different color bands, which allows for higher efficiencies than traditional methods. We present a design, the polyhedral specular reflector, that has the potential for > 50% module efficiencies even with realistic losses from combined optics, cell, and electrical models. Prototyping efforts of one of these designs using glass concentrators yields an optical module whose combined spectrum-splitting and concentration should correspond to a record module efficiency of 42%. Finally, we consider how the manipulation of radiatively emitted photons from subcells in multijunction architectures can be used to achieve even higher efficiencies than previously thought, inspiring both optimization of incident and radiatively emitted photons for future high efficiency designs. In this thesis work, we explore novel device and photonic designs that represent a significant departure from current solar cell manufacturing techniques and ultimately show the potential for much higher solar cell efficiencies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[ES]En este proyecto se recoge un análisis de las diferentes tecnologías de centrales termosolares. Las energías renovables tienen un papel fundamental en el abastecimiento energético futuro, ya que son una fuente inagotable con un impacto medioambiental mínimo. Dentro de las renovables, la energía termosolar es una de las más destacables en España, que se ha situado como el país líder en termosolar. Existen cuatro tecnologías diferentes para este tipo de centrales, por lo que el objetivo de este trabajo es profundizar en su conocimiento y proporcionar un criterio objetivo que permita seleccionar la más adecuada en futuras instalaciones. Para ello, se considerarán tanto aspectos técnicos como económicos, con el fin de estudiar las principales ventajas y desventajas de cada tipo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the last fifty years, Nunavut has developed a deep dependence on diesel for virtually all of its energy needs, including electricity. This dependence has created a number of economic, environmental and health related challenges in the territory, with an estimated 20% of the territory’s annual budget being spent on energy, thereby limiting the Government of Nunavut’s ability to address other essential infrastructure and societal needs, such as education, nutrition and health care and housing. One solution to address this diesel dependency is the use of renewable energy technologies (RETs), such as wind, solar and hydropower. As such, this thesis explores energy alternatives in Nunavut, and through RETScreen renewable energy simulations, found that solar power and wind power are technically viable options for Nunavut communities and a potentially successful means to offset diesel-generated electricity in Nunavut. However, through this analysis it was also discovered that accurate data or renewable resources are often unavailable for most Nunavut communities. Moreover, through qualitative open-ended interviews, the perspectives of Nunavut residents with regards to developing RETs in Nunavut were explored, and it was found that respondents generally supported the use of renewable energy in their communities, while acknowledging that there still remains a knowledge gap among residents regarding renewable energy, stemming from a lack of communication between the communities, government and the utility company. In addition, the perceived challenges, opportunities and gaps that exist with regards to renewable energy policy and program development were discussed with government policy-makers through further interviews, and it was discovered that often government departments work largely independently of each other rather than collaboratively, creating gaps and oversights in renewable energy policy in Nunavut. Combined, the results of this thesis were used to develop a number of recommended policy actions that could be undertaken by the territorial and federal government to support a shift towards renewable energy in order to develop a sustainable and self-sufficient energy plan in Nunavut. They include: gathering accurate renewable resource data in Nunavut; increasing community consultations on the subject of renewable energy; building strong partnerships with universities, colleges and industry; developing a knowledge sharing network; and finally increasing accessibility to renewable energy programs and policies in Nunavut.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Photovoltaic (PV) solar power generation is proven to be effective and sustainable but is currently hampered by relatively high costs and low conversion efficiency. This paper addresses both issues by presenting a low-cost and efficient temperature distribution analysis for identifying PV module mismatch faults by thermography. Mismatch faults reduce the power output and cause potential damage to PV cells. This paper first defines three fault categories in terms of fault levels, which lead to different terminal characteristics of the PV modules. The investigation of three faults is also conducted analytically and experimentally, and maintenance suggestions are also provided for different fault types. The proposed methodology is developed to combine the electrical and thermal characteristics of PV cells subjected to different fault mechanisms through simulation and experimental tests. Furthermore, the fault diagnosis method can be incorporated into the maximum power point tracking schemes to shift the operating point of the PV string. The developed technology has improved over the existing ones in locating the faulty cell by a thermal camera, providing a remedial measure, and maximizing the power output under faulty conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper proposes a new thermography-based maximum power point tracking (MPPT) scheme to address photovoltaic (PV) partial shading faults. Solar power generation utilizes a large number of PV cells connected in series and in parallel in an array, and that are physically distributed across a large field. When a PV module is faulted or partial shading occurs, the PV system sees a nonuniform distribution of generated electrical power and thermal profile, and the generation of multiple maximum power points (MPPs). If left untreated, this reduces the overall power generation and severe faults may propagate, resulting in damage to the system. In this paper, a thermal camera is employed for fault detection and a new MPPT scheme is developed to alter the operating point to match an optimized MPP. Extensive data mining is conducted on the images from the thermal camera in order to locate global MPPs. Based on this, a virtual MPPT is set out to find the global MPP. This can reduce MPPT time and be used to calculate the MPP reference voltage. Finally, the proposed methodology is experimentally implemented and validated by tests on a 600-W PV array. 

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper is on the self-scheduling for a power producer taking part in day-ahead joint energy and spinning reserve markets and aiming at a short-term coordination of wind power plants with concentrated solar power plants having thermal energy storage. The short-term coordination is formulated as a mixed-integer linear programming problem given as the maximization of profit subjected to technical operation constraints, including the ones related to a transmission line. Probability density functions are used to model the variability of the hourly wind speed and the solar irradiation in regard to a negative correlation. Case studies based on an Iberian Peninsula wind and concentrated solar power plants are presented, providing the optimal energy and spinning reserve for the short-term self-scheduling in order to unveil the coordination benefits and synergies between wind and solar resources. Results and sensitivity analysis are in favour of the coordination, showing an increase on profit, allowing for spinning reserve, reducing the need for curtailment, increasing the transmission line capacity factor. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Actualmente a humanidade depara-se com um dos grandes desafios que é o de efectivar a transição para um futuro sustentável. Logo, o sector da energia tem um papel chave neste processo de transição, com principal destaque para a energia solar, tendo em conta que é uma das fontes de energias renováveis mais promissoras, podendo no médiolongo prazo, tornar-se uma das principais fontes de energia no panorama energético dos países. A energia solar térmica de concentração (CSP), apesar não ser ainda conhecida em Portugal, possui um potencial relevante em regiões específicas do nosso território. Logo, o objectivo deste trabalho é efectuar uma análise detalhada dos sistemas solares de concentração para produção de energia eléctrica, abordando temas, tais como, o potencial da energia solar, a definição do processo de concentração solar, a descrição das tecnologias existentes, o estado da arte do CSP, mercado CSP no mundo, e por último, a análise da viabilidade técnico-económica da instalação de uma central tipo torre solar de 20 MW, em Portugal. Para que este objectivo fosse exequível, recorreu-se à utilização de um software de simulação termodinâmica de centrais CSP, denominado por Solar Advisor Model (SAM). O caso prático foi desenvolvido para a cidade de Faro, onde foram simuladas quatro configurações distintas para uma central do tipo torre solar de 20 MW. Foram apresentados resultados, focando a desempenho diário e anual da central. Foi efectuada uma análise para avaliação da influência da variabilidade dos parâmetros, localização geográfica, múltiplo solar, capacidade de armazenamento de calor e fracção de hibridização sobre o custo nivelado da energia (LCOE), o factor de capacidade e a produção anual de energia. Conjuntamente, é apresentada uma análise de sensibilidade, com a finalidade de averiguar quais os parâmetros que influenciam de forma mais predominante o valor do LCOE. Por último, é apresentada uma análise de viabilidade económica de um investimento deste tipo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L’objecte del projecte és dissenyar una central productora d’energia elèctrica a través d’una turbina de vapor i un generador acoblat a aquesta, mitjançant concentradors d’energia solar cilindro-parabòlics. Aquests concentradors captaran la radiació directa del sol per concentrar-la al focus de la paràbola, on s’hi col·locarà un receptor per l’interior del qual hi passarà un fluid que s’escalfarà gràcies a aquests raigs concentrats. En el projecte s’ha dissenyat la instal·lació i estudiat la radiació disponible a la zona, s’ha realitzat un estudi de la viabilitat de la instal·lació necessària i del cost econòmic d’una central d’energia termoelèctrica fictícia a la zona de Tarragona

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Concentrated solar power systems are expected to be sited in desert locations where the direct normal irradiation is above 1800 kWh/m2.year. These systems include large solar collector assemblies, which account for a significant share of the investment cost. Solarreflectors are the main components of these solar collector assemblies and dust/sand storms may affect their reflectance properties, either by soiling or by surface abrasion. While soiling can be reverted by cleaning, surface abrasion is a non reversible degradation.The aim of this project was to study the accelerated aging of second surface silvered thickglass solar reflectors under simulated sandstorm conditions and develop a multi-parametric model which relates the specular reflectance loss to dust/sand storm parameters: wind velocity, dust concentration and time of exposure. This project focused on the degradation caused by surface abrasion.Sandstorm conditions were simulated in a prototype environmental test chamber. Material samples (6cm x 6cm) were exposed to Arizona coarse test dust. The dust stream impactedthese material samples at a perpendicular angle. Both wind velocity and dust concentrationwere maintained at a stable level for each accelerated aging test. The total exposure time in the test chamber was limited to 1 hour. Each accelerated aging test was interrupted every 4 minutes to measure the specular reflectance of the material sample after cleaning.The accelerated aging test campaign had to be aborted prematurely due to a contamination of the dust concentration sensor. A robust multi-parametric degradation model could thus not be derived. The experimental data showed that the specular reflectance loss decreasedeither linearly or exponentially with exposure time, so that a degradation rate could be defined as a single modeling parameter. A correlation should be derived to relate this degradation rate to control parameters such as wind velocity and dust/sand concentration.The sandstorm chamber design would have to be updated before performing further accelerated aging test campaigns. The design upgrade should improve both the reliability of the test equipment and the repeatability of accelerated aging tests. An outdoor exposure test campaign should be launched in deserts to learn more about the intensity, frequencyand duration of dust/sand storms. This campaign would also serve to correlate the results of outdoor exposure tests with accelerated exposure tests in order to develop a robust service lifetime prediction model for different types of solar reflector materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The urbanization of modern societies has imposed to the planners and decision-makers a more precise attention to facts not considered before. Several aspects, such as the energy availability and the deleterious effect of pollution on the populations, must be considered in the policy decisions of cities urbanization. The current paradigm presents centralized power stations supplying a city, and a combination of technologies may compose the energy mix of a country, such as thermal power plants, hydroelectric plants, wind systems and solar-based systems, with their corresponding emission pattern. A goal programming multi-objective optimization model is presented for the electric expansion analysis of a tropical city, and also a case study for the city of Guaratinguetá, Brazil, considering a particular wind and solar radiation patterns established according to actual data and modeled via the time series analysis method. Scenarios are proposed and the results of single environmental objective, single economic objective and goal programming multi-objective modeling are discussed. The consequences of each dispatch decision, which considers pollutant emission exportation to the neighborhood or the need of supplementing electricity by purchasing it from the public electric power grid, are discussed. The results revealed energetic dispatch for the alternatives studied and the optimum environmental and economic solution was obtained. © 2012 Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The best description of water resources for Grand Turk was offered by Pérez Monteagudo (2000) who suggested that rain water was insufficient to ensure a regular water supply although water catchment was being practised and water catchment possibilities had been analysed. Limestone islands, mostly flat and low lying, have few possibilities for large scale surface storage, and groundwater lenses exist in very delicate equilibrium with saline seawater, and are highly likely to collapse due to sea level rise, improper extraction, drought, tidal waves or other extreme event. A study on the impact of climate change on water resources in the Turks and Caicos Islands is a challenging task, due to the fact that the territory of the Islands covers different environmental resources and conditions, and accurate data are lacking. The present report is based on collected data wherever possible, including grey data from several sources such as the Intergovernmental Panel on Climate Change (IPCC) and Cuban meteorological service data sets. Other data were also used, including the author’s own estimates and modelling results. Although challenging, this was perhaps the best approach towards analysing the situation. Furthermore, IPCC A2 and B2 scenarios were used in the present study in an effort to reduce uncertainty. The main conclusion from the scenario approach is that the trend observed in precipitation during the period 1961 - 1990 is decreasing. Similar behaviour was observed in the Caribbean region. This trend is associated with meteorological causes, particularly with the influence of the North Atlantic Anticyclone. The annual decrease in precipitation is estimated to be between 30-40% with uncertain impacts on marine resources. After an assessment of fresh water resources in Turks and Caicos Islands, the next step was to estimate residential water demand based on a high fertility rate scenario for the Islands (one selected from four scenarios and compared to countries having similar characteristics). The selected scenario presents higher projections on consumption growth, enabling better preparation for growing water demand. Water demand by tourists (stopover and excursionists, mainly cruise passengers) was also obtained, based on international daily consumption estimates. Tourism demand forecasts for Turks and Caicos Islands encompass the forty years between 2011 and 2050 and were obtained by means of an Artificial Neural Networks approach. for the A2 and B2 scenarios, resulting in the relation BAU>B2>A2 in terms of tourist arrivals and water demand levels from tourism. Adaptation options and policies were analysed. Resolving the issue of the best technology to be used for Turks and Caicos Islands is not directly related to climate change. Total estimated water storage capacity is about 1, 270, 800 m3/ year with 80% capacity load for three plants. However, almost 11 desalination plants have been detected on Turks and Caicos Islands. Without more data, it is not possible to estimate long term investment to match possible water demand and more complex adaptation options. One climate change adaptation option would be the construction of elevated (30 metres or higher) storm resistant water reservoirs. The unit cost of the storage capacity is the sum of capital costs and operational and maintenance costs. Electricity costs to pump water are optional as water should, and could, be stored for several months. The costs arising for water storage are in the range of US$ 0.22 cents/m3 without electricity costs. Pérez Monteagudo (2000) estimated water prices at around US$ 2.64/m3 in stand points, US$ 7.92 /m3 for government offices, and US$ 13.2 /m3for cistern truck vehicles. These data need to be updated. As Turks and Caicos Islands continues to depend on tourism and Reverse Osmosis (RO) for obtaining fresh water, an unavoidable condition to maintaining and increasing gross domestic product(GDP) and population welfare, dependence on fossil fuels and vulnerability to increasingly volatile prices will constitute an important restriction. In this sense, mitigation supposes a synergy with adaptation. Energy demand and emissions of carbon dioxide (CO2) were also estimated using an emissions factor of 2. 6 tCO2/ tonne of oil equivalent (toe). Assuming a population of 33,000 inhabitants, primary energy demand was estimated for Turks and Caicos Islands at 110,000 toe with electricity demand of around 110 GWh. The business as usual (BAU), as well as the mitigation scenarios were estimated. The BAU scenario suggests that energy use should be supported by imported fossil fuels with important improvements in energy efficiency. The mitigation scenario explores the use of photovoltaic and concentrating solar power, and wind energy. As this is a preliminary study, the local potential and locations need to be identified to provide more relevant estimates. Macroeconomic assumptions are the same for both scenarios. By 2050, Turks and Caicos Islands could demand 60 m toe less than for the BAU scenario.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work, based in a patent request at INPI, protocol no. 020110035974, presents a system development using solar panels to supply the electricity demand required by punctual loads, without a storage unit or utility grid synchronism, through a control circuit that allows parallel operation with the power grid during low sunlight incidence periods. A study about solar panel construction and topologies for Power generation was done, in a atempt to evalute impacts in project. This development was modular, providing the system the possibility of power capacity expansion and load diversity as well, in an attempt to reduce the total energy requirements from the residential sector drained from the power grid along the day