959 resultados para Soil nutrient
Resumo:
The mobility of elements within plants contributes to a plant species' tolerance of nutrient deficiencies in the soil. The genetic manipulation of within-plant nutrient movement may therefore provide a means to enhance plant growth under conditions of variable soil nutrient availability. In these experiments tobacco (Nicotiana tabacum) was engineered to synthesize sorbitol, and the resultant effect on phloem mobility of boron (B) was determined. In contrast to wild-type tobacco, transgenic tobacco plants containing sorbitol exhibit a marked increase in within-plant B mobility and a resultant increase in plant growth and yield when grown with limited or interrupted soil B supply. Growth of transgenic tobacco could be maintained by reutilization of B present in mature tissues or from B supplied as a foliar application to mature leaves. In contrast, B present in mature leaves of control tobacco lines could not be used to provide the B requirements for new plant growth. 10B-labeling experiments verified that B is phloem mobile in transgenic tobacco but is immobile in control lines. These results demonstrate that the transgenic enhancement of within-plant nutrient mobility is a viable approach to improve plant tolerance of nutrient stress.
Resumo:
A cultura do café no Brasil tem apresentado frequente deficiência de magnésio (Mg) limitando sua produtividade, portanto faz-se necessário o estudo de fontes que contenham Mg para essa cultura. Por outro lado, o estudo das metodologias de análise de K, Ca e Mg no solo é um outro ponto que precisa ser estudado para melhor manejo da fertilidade do solo e recomendação de adubações. Objetivou-se com o primeiro experimento avaliar a eficiência de fontes de magnésio para a cultura do café e a dinâmica deste nutriente no perfil do solo. E com o experimento desenvolvido em Arkansas-EUA, avaliar as correlações entre as concentrações de nutrientes do solo seco em estufa e úmido de campo extraídos com Mehlich-3 e 1 mol L-1 NH4OAc. Observou-se que o óxido e oxissulfato de Mg elevaram os valores de pH e CTC e diminuíram a concentração de H + Al do solo. As fontes diminuíram a disponibilidade de K e Ca, e aumentaram o Mg no solo. Na planta, óxido e sulfato de Mg proporcionaram maior concentração de Mg foliar. Apenas no segundo ano de avaliação houve aumento de produtividade do café. Os fertilizantes óxido e oxissulfato de Mg obtiveram o maior índice de eficiência agronômica em relação ao carbonato de Mg. No segundo experimento, K, Ca e Mg extraíveis com Mehlich-3 e NH4OAc foram altamente correlacionados (r2> 0,95) tanto para solo úmido de campo quanto para o seco em estufa. A relação entre as concentrações de K no solo seco em estufa e úmido de campo para Mehlich-3 e NH4OAc foram muito semelhantes e altamente correlacionados (r2 = 0,92). A secagem do solo em estufa teve efeito mínimo sobre as concentrações de Ca e reduziu a concentração de Mg tanto para Mehlich-3 quanto para NH4OAc. Entre os nutrientes estudados, a concentração de K foi a mais afetada pela secagem em estufa, necessitando de pesquisas de campo para correlacionar e calibrar novas recomendações agronômicas.
Resumo:
A obtenção de etanol a partir de rotas alcoolquímicas consagradas gera resíduos com potencial de aproveitamento, tanto em outros setores produtivos como no ciclo produtivo do próprio combustível. Este é o caso de torta de filtro e vinhaça. A vinhaça em particular costuma ser devolvida ao campo com o intuito de ajustar teores nutricionais do solo no cultivo da cana. No entanto, estudos ambientais destacam que esta alternativa traz efeitos negativos sobre os meios receptores (água e solo), condição que abre a perspectiva para exploração de usos alternativos dessas substâncias. Este estudo se propôs a contribuir para o tema ao avaliar de forma sistêmica o desempenho ambiental de duas alternativas de reaproveitamento de vinhaça: (i) reuso no campo em processos de fertirrigação, alternativa consolidada no Brasil, e (ii) reuso da fração líquida da vinhaça em etapas diversas do processo industrial de obtenção de etanol. Em qualquer das situações fez-se uso da técnica de Avaliação de Ciclo de Vida - ACV para proceder tal verificação. A análise ambiental da prática de reuso de vinhaça e torta para fertirrigação foi conduzida a partir da comparação de cenários que consideraram a forma de suprimento de nutrientes para a cana e o método de colheita. A avaliação de impactos ocorreu em dois níveis: quanto ao consumo de recursos, a partir de Primary Energy Demand (PED); e em termos de emissões para o ambiente por meio da elaboração do Perfil Ambiental. Uma Análise de Sensibilidade foi também realizada para verificar o efeito de oscilações dos teores de Nitrogênio (N), Fósforo (P) e Potássio (K) na composição da vinhaça sobre os resultados obtidos, caso da primeira alternativa. Concluiu-se para esse caso que a substituição parcial de fertilizantes químicos por vinhaça traz aumento da Demanda de Energia Primária global para ambos os métodos de colheita. Em termos de Perfil Ambiental, a comparação entre cenários das mesmas práticas de manejo mostrou que a troca de adubos por vinhaça e torta é positiva para o desempenho ambiental do etanol por reduzir impactos quanto a Mudanças Climáticas (CC), Acidificação Terrestre (TA) e Toxicidade Humana (HT). Por outro lado, o tratamento de vinhaça para reposição de água na etapa industrial resultou em aumento global das contribuições para as categorias acima mencionadas além de incrementos para Eutrofização de água doce (FEut) e Ecotoxicidade de água doce (FEC), a despeito de ser constatada a redução de 45% quanto a Depleção de água (WD). Os aumentos no impacto se deveram principalmente aos efeitos negativos causados durante a produção do CaO usado no processo de tratamento da vinhaça. No entanto, a substituição deste insumo por NaOH só representou melhora em termos de CC. Pode-se concluir que a reutilização de vinhaça e de torta de filtro como complemento nutricional para o cultivo de cana-de-açúcar resultou em uma alternativa mais adequada de reaproveitamento do que o se este fluído fosse reutilizado para suprir parte da demanda hídrica de processo, mesmo quando o consumo de água na etapa industrial tenha inexoravelmente se reduzido a partir da implantação dessa medida.
Resumo:
The purpose of this research was to determine what challenges small-scale organic farmers face in choosing their particular production, marketing, and organizational strategies in Miami-Dade County. Rapid soil assessments were used on six organic farms to determine the effects of soil nutrient management in terms of pH, soil organic matter (SOM), and phosphorus (P). Potential costs of inputs were documented for each farm to determine the largest challenges facing the profitability of organic farms. A production, marketing, and organizational analysis determined how farmers shape their inter-farm competitive and cooperative relations. Preliminary findings from soil, input, labor, marketing, and organizational factors indicate that soil health varies dramatically from farm to farm, inputs and labor constitute significant costs, and marketing, production, and organizational strategies show no signs of immediate growth.
Resumo:
Assessing the soil nutrient availability to plants under lab conditions is one of the main challenges to Soil Fertility and Chemistry, due to the complex behavior and the interaction of the soil properties. Many extractant solutions associated with mechanical forms of agitation have been proposed, showing different correlations with plant growth and nutrients absorption. Using ultrasonic energy is a agitation procedure of the soil:extractant solution suspension (based on the cavitation phenomenon). It allows the establishment of relations between the amount of extracted nutrient and the ultrasonic energy level. Thus, this work aims: to evaluate the effect of cavitation intensity on the extraction of P, Zn, Cu, Mn and Fe in soil samples from five Latosols under different uses around Uberlândia and Uberaba, Minas Gerais State; to obtain extracting curves as function of ultrasonic energy levels; and to obtain an index from extracting curves to expresses the nutrient retention by the soil solid phase. A soil-solution suspension (ratio 1:10) was sonicated using a probe ultrasound equipment under different combinations of power and time: i) 30 W for 35, 70, 140 and 280 s; ii) 50 W for 21, 42, 84 and 168 s; and iii) 70 W for 15, 30, 60 and 120 s. The extractant solutions used were Mehlich-1 (for all elements), Olsen and distilled water for P. After each sonication, P concentration was quantified by molybdenum blue colorimetric method and Zn, Cu, Mn and Fe by flame atomic absorption spectrophotometry. The cavitation intensity did not affect the P extraction, only the total energy applied. The P extraction was influenced by extractant solution, decreasing as follows: Mehlich-1>Olsen>water. In cultivated Latosols, the P extraction increased linearly with ultrasonic energy, and the slope of the 1:1 linear regression reflects the P retention in the soil. The Zn and Fe extractions were influenced only by total energy applied. Mn and Cu extractions were influenced by both cavitation intensity and total ultrasonic energy. Soils containing similar amounts of P, Cu, Zn, Mn, and Fe may have a different extraction rate. Likewise, soils containing different amounts of those elements may have the same extraction rate.
Resumo:
In most agroecosystems, nitrogen (N) is the most important nutrient limiting plant growth. One management strategy that affects N cycling and N use efficiency (NUE) is conservation agriculture (CA), an agricultural system based on a combination of minimum tillage, crop residue retention and crop rotation. Available results on the optimization of NUE in CA are inconsistent and studies that cover all three components of CA are scarce. Presently, CA is promoted in the Yaqui Valley in Northern Mexico, the country´s major wheat-producing area in which from 1968 to 1995, fertilizer application rates for the cultivation of irrigated durum wheat (Triticum durum L.) at 6 t ha-1 increased from 80 to 250 kg ha-1, demonstrating the high intensification potential in this region. Given major knowledge gaps on N availability in CA this thesis summarizes the current knowledge of N management in CA and provides insights in the effects of tillage practice, residue management and crop rotation on wheat grain quality and N cycling. Major aims of the study were to identify N fertilizer application strategies that improve N use efficiency and reduce N immobilization in CA with the ultimate goal to stabilize cereal yields, maintain grain quality, minimize N losses into the environment and reduce farmers’ input costs. Soil physical and chemical properties in CA were measured and compared with those in conventional systems and permanent beds with residue burning focusing on their relationship to plant N uptake and N cycling in the soil and how they are affected by tillage and N fertilizer timing, method and doses. For N fertilizer management, we analyzed how placement, time and amount of N fertilizer influenced yield and quality parameters of durum and bread wheat in CA systems. Overall, grain quality parameters, in particular grain protein concentration decreased with zero-tillage and increasing amount of residues left on the field compared with conventional systems. The second part of the dissertation provides an overview of applied methodologies to measure NUE and its components. We evaluated the methodology of ion exchange resin cartridges under irrigated, intensive agricultural cropping systems on Vertisols to measure nitrate leaching losses which through drainage channels ultimately end up in the Sea of Cortez where they lead to algae blooming. A throughout analysis of N inputs and outputs was conducted to calculate N balances in three different tillage-straw systems. As fertilizer inputs are high, N balances were positive in all treatments indicating the risk of N leaching or volatilization during or in subsequent cropping seasons and during heavy rain fall in summer. Contrary to common belief, we did not find negative effects of residue burning on soil nutrient status, yield or N uptake. A labeled fertilizer experiment with urea 15N was implemented in micro-plots to measure N fertilizer recovery and the effects of residual fertilizer N in the soil from summer maize on the following winter crop wheat. Obtained N fertilizer recovery rates for maize grain were with an average of 11% very low for all treatments.
Resumo:
Brazil typifies the land use changes happening in South America, where natural vegetation is continuously converted into agriculturally used lands, such as cattle pastures and croplands. Such changes in land use are always associated with changes in the soil nutrient cycles and result in altered greenhouse gas fluxes from the soil to the atmosphere. In this study, we analyzed literature values to extract patterns of direct nitrous oxide (N2O) emissions from soils of different ecosystems in Brazil. Fluxes from natural ecosystems exhibited a wide range: whereas median annual flux rates were highest in Amazonian and Atlantic rainforests (2.42 and 0.88 kg N ha-1), emissions from cerrado soils were close to zero. The decrease in emissions from pastures with increasing time after conversion was associated with pasture degradation. We found comparatively low N2O-N fluxes from croplands (-0.07 to 4.26 kg N ha-1 yr-1 , median 0.80 kg N ha-1 yr-1) and a low response to N fertilization. Contrary to the assumptions, soil parameters, such as pH, Corg, and clay content emerged as poor predictors for N2O fluxes. This could be a result of the formation of micro-aggregates, which strongly affect the hydraulic properties of the soil, and consequently define nitrification and denitrification potentials. Since data from croplands mainly derived from areas that had been under natural cerrado vegetation before, it could explain the low emissions under agriculture. Measurements must be more frequent and regionally spread in order to enable sound national estimates.
Resumo:
Composting is a useful way of transforming livestock waste into organic fertilizer, which is proven to increase soil nutrient levels, and thus crop yield. Remains from production and slaughter of small ruminants can become a source of important elements for plant growth, such as N, after microorganism-driven decomposition.The aim of this investigation was to evaluate the effects of this compost on soil fertility and on the nutritional status and yield of the corn crop. The experiment was conducted in a Haplic Luvisol in a randomized block design with six treatments and five application rates of the organic compound in Mg ha-1: 3 (half the standard rate), 6 (standard rate), 9 (one and a half times the standard rate), 12 (twice the standard rate), and 24 (four times the standard rate) and an additional treatment with mineral fertilizers (110, 50 e 30 kg ha-1 of N, P2O5 and K2O, respectively), with four blocks. Evaluations were performed for two harvests of rainfed crops, measuring soil fertility, nutritional status, and grain yield. The compost increased P, K, Na and Zn values in the 0.00-0.20 m layer in relation of mineral fertilization in 616, 21, 114 and 90 % with rate 24 Mg ha-1 in second crop. Leaf N, Mg, and S contents, relative chlorophyll content, and the productivity of corn kernels increased in 27, 32, 36, 20 e 85 %, respectively, of low rate (3 Mg ha-1) to high rate (24 Mg ha-1) with of application of the compost. Corn yield was higher with application of organic compost in rate of 24 Mg ha-1 than mineral fertilizer combination in second crop.
Resumo:
Nitrogen balance is increasingly used as an indicator of the environmental performance of agricultural sector in national, international, and global contexts. There are three main methods of accounting the national nitrogen balance: farm gate, soil surface, and soil system. OECD (2008) recently reported the nitrogen and phosphorus balances for member countries for the 1985 - 2004 period using the soil surface method. The farm gate and soil system methods were also used in some international projects. Some studies have provided the comparison among these methods and the conclusion is mixed. The motivation of this present paper was to combine these three methods to provide a more detailed auditing of the nitrogen balance and flows for national agricultural production. In addition, the present paper also provided a new strategy of using reliable international and national data sources to calculate nitrogen balance using the farm gate method. The empirical study focused on the nitrogen balance of OECD countries for the period from 1985 to 2003. The N surplus sent to the total environment of OECD surged dramatically in early 1980s, gradually decreased during 1990s but exhibited an increasing trends in early 2000s. The overall N efficiency however fluctuated without a clear increasing trend. The eco-environmental ranking shows that Australia and Ireland were the worst while Korea and Greece were the best.
Resumo:
Soil microorganisms are critical to ecosystem functioning and the maintenance of soil fertility. However, despite global increases in the inputs of nitrogen (N) and phosphorus (P) to ecosystems due to human activities, we lack a predictive understanding of how microbial communities respond to elevated nutrient inputs across environmental gradients. Here we used high-throughput sequencing of marker genes to elucidate the responses of soil fungal, archaeal, and bacterial communities using an N and P addition experiment replicated at 25 globally distributed grassland sites. We also sequenced metagenomes from a subset of the sites to determine how the functional attributes of bacterial communities change in response to elevated nutrients. Despite strong compositional differences across sites, microbial communities shifted in a consistent manner with N or P additions, and the magnitude of these shifts was related to the magnitude of plant community responses to nutrient inputs. Mycorrhizal fungi and methanogenic archaea decreased in relative abundance with nutrient additions, as did the relative abundances of oligotrophic bacterial taxa. The metagenomic data provided additional evidence for this shift in bacterial life history strategies because nutrient additions decreased the average genome sizes of the bacterial community members and elicited changes in the relative abundances of representative functional genes. Our results suggest that elevated N and P inputs lead to predictable shifts in the taxonomic and functional traits of soil microbial communities, including increases in the relative abundances of faster-growing, copiotrophic bacterial taxa, with these shifts likely to impact belowground ecosystems worldwide.
Resumo:
A guide to better soil, water and nutrient management practices for the south east Queensland strawberry industry.
Resumo:
Runoff, soil loss, and nutrient loss were assessed on a Red Ferrosol in tropical Australia over 3 years. The experiment was conducted using bounded, 100-m(2) field plots cropped to peanuts, maize, or grass. A bare plot, without cover or crop, was also instigated as an extreme treatment. Results showed the importance of cover in reducing runoff, soil loss, and nutrient loss from these soils. Runoff ranged from 13% of incident rainfall for the conventional cultivation to 29% under bare conditions during the highest rainfall year, and was well correlated with event rainfall and rainfall energy. Soil loss ranged from 30 t/ha. year under bare conditions to <6 t/ha. year under cropping. Nutrient losses of 35 kg N and 35 kg P/ha. year under bare conditions and 17 kg N and 11 kg P/ha. year under cropping were measured. Soil carbon analyses showed a relationship with treatment runoff, suggesting that soil properties influenced the rainfall runoff response. The cropping systems model PERFECT was calibrated using runoff, soil loss, and soil water data. Runoff and soil loss showed good agreement with observed data in the calibration, and soil water and yield had reasonable agreement. Longterm runs using historical weather data showed the episodic nature of runoff and soil loss events in this region and emphasise the need to manage land using protective measures such as conservation cropping practices. Farmers involved in related, action-learning activities wished to incorporate conservation cropping findings into their systems but also needed clear production benefits to hasten practice change.
Resumo:
Macfadyena unguis-cati (L.) Gentry (Bignoniaceae) is a major environmental weed in coastal Queensland, Australia. There is a lack of quantitative data on its leaf chemistry and its impact on soil properties. Soils from infested vs uninfested areas, and leaves of M. unguis-cati and three co-occurring vine species (one exotic, two native) were collected at six sites (riparian and non-riparian) in south-eastern Queensland. Effects of invasion status, species, site and habitat type were examined using univariate and multivariate analyses. Habitat type had a greater effect on soil nutrients than on leaf chemistry. Invasion effect of M. unguis-cati on soil chemistry was more pronounced in non-riparian than in riparian habitat. Significantly higher values were obtained in M. unguis-cati infested (vs. uninfested) soils for ~50% of traits. Leaf ion concentrations differed significantly between exotic and native vines. Observed higher leaf-nutrient load (especially nitrogen, phosphorus and potassium) in exotic plants aligns with the preference of invasive plant species for disturbed habitats with higher nutrient input. Higher load of trace elements (aluminium, boron, cadmium and iron) in its leaves suggests that cycling of heavy-metal ions, many of which are potentially toxic at excess level, could be accelerated in soils of M. unguis-cati-invaded landscape. Although inferences from the present study are based on correlative data, the consistency of the patterns across many sites suggests that M. unguis-cati may improve soil fertility and influence nutrient cycling, perhaps through legacy effects of its own litter input.
Resumo:
Clays could underpin a viable agricultural greenhouse gas (GHG) abatement technology given their affinity for nitrogen and carbon compounds. We provide the first investigation into the efficacy of clays to decrease agricultural nitrogen GHG emissions (i.e., N2O and NH3). Via laboratory experiments using an automated closed-vessel analysis system, we tested the capacity of two clays (vermiculite and bentonite) to decrease N2O and NH3 emissions and organic carbon losses from livestock manures (beef, pig, poultry, and egg layer) incorporated into an agricultural soil. Clay addition levels varied, with a maximum of 1:1 to manure (dry weight). Cumulative gas emissions were modeled using the biological logistic function, with 15 of 16 treatments successfully fitted (P < 0.05) by this model. When assessing all of the manures together, NH3 emissions were lower (×2) at the highest clay addition level compared with no clay addition, but this difference was not significant (P = 0.17). Nitrous oxide emissions were significantly lower (×3; P < 0.05) at the highest clay addition level compared with no clay addition. When assessing manures individually, we observed generally decreasing trends in NH3 and N2O emissions with increasing clay addition, albeit with widely varying statistical significance between manure types. Most of the treatments also showed strong evidence of increased C retention with increasing clay additions, with up to 10 times more carbon retained in treatments containing clay compared with treatments containing no clay. This preliminary assessment of the efficacy of clays to mitigate agricultural GHG emissions indicates strong promise.
Resumo:
Large herbivores can influence plant and soil properties in grassland ecosystems, but especially for belowground biota and processes, the mechanisms that explain these effects are not fully understood. Here, we examine the capability of three grazing mechanisms-plant defoliation, dung and urine return, and physical presence of animals (causing trampling and excreta return in patches)-to explain grazing effects in Phleum pratense-Festuca pratensis dairy cow pasture in Finland. Comparison of control plots and plots grazed by cows showed that grazing maintained original plant-community structure, decreased shoot mass and root N and P concentrations, increased shoot N and P concentrations, and had an inconsistent effect on root mass. Among soil fauna, grazing increased the abundance of fungivorous nematodes and Aporrectodea earthworms and decreased the abundance of detritivorous enchytraeids and Lumbricus earthworms. Grazing also increased soil density and pH but did not affect average soil inorganic-N concentration. To reveal the mechanisms behind these effects, we analyzed results from mowed plots and plots that were both mowed and treated with a dung and urine mixture. This comparison revealed that grazing effects on plant attributes were almost entirely explained by defoliation, with only one partly explained by excreta return. Among belowground attributes, however, the mechanisms were more mixed, with effects explained by defoliation, patchy excreta return, and cow trampling. Average soil inorganic-N concentration was not affected by grazing because it was simultaneously decreased by defoliation and increased by cow presence. Presence of cows created great spatial heterogeneity in soil N availability and abundance of fungivorous nematodes. A greenhouse trial revealed a grazing-induced soil feedback on plant growth, which was explained by patchiness in N availability rather than changes in soil biota. Our results show that grazing effects on plant attributes can be satisfactorily predicted using the effects of defoliation, whereas those on soil fauna and soil N availability need understanding of other mechanisms as well. The results indicate that defoliation-induced changes in plant ecophysiology and the great spatial variation in N availability created by grazers are the two key mechanisms through which large herbivores can control grassland ecosystems.