950 resultados para Soil conservation projects
Resumo:
"Issued July 1965"--Table of contents.
Resumo:
"Issued May 1963, slightly revised May 1968."
Resumo:
Cover title.
Resumo:
"March 1985"--P. 2.
Resumo:
"March 1985"--P. 2.
Resumo:
Rev. and supplemented list originally published in Sept., 1937.
Resumo:
Description based on: No. 4 (Nov. 1950); title from cover.
Resumo:
Mode of access: Internet.
Resumo:
'Social capital' refers to the relationships of trust, communication, and cooperation that facilitate collective action in a community. It is particularly relevant to soil conservation in developing countries, which requires collective efforts to raise awareness of soil degradation, provide effective training in soil conservation practices, and implement soil conservation measures on individual farms. The Landcare Program in the Southern Philippines promotes simple conservation practices in upland environments through establishing and supporting community landcare groups and municipal landcare associations, thus augmenting the social capital of farmers in these locations. An evaluation of the Landcare Program in Barangay Ned, South Cotabato, based on a survey of 313 farm households and case studies of nine landcare groups, shows that, despite extreme isolation and difficult working conditions, farmers responded by rapidly forming landcare groups and a landcare association, and adopting contour barriers on their maize farms. They utilized the bonding social capital inhering in their local communities to build stocks of bridging social capital, linking them to information, training and resources from outside their immediate locality. A logistic regression model of the factors affecting adoption of contour barriers shows that farmers who had undergone the practical, farmer-based training provided by the Landcare Program, and who were members of a landcare group, were significantly more likely to adopt conservation measures. These results confirm the value of investing in social capital to promote soil conservation. Copyright (c) 2005 John Wiley & Sons, Ltd.
Resumo:
The grazing lands of northern Australia contain a substantial soil organic carbon (SOC) stock due to the large land area. Manipulating SOC stocks through grazing management has been presented as an option to offset national greenhouse gas emissions from agriculture and other industries. However, research into the response of SOC stocks to a range of management activities has variously shown positive, negative or negligible change. This uncertainty in predicting change in SOC stocks represents high project risk for government and industry in relation to SOC sequestration programs. In this paper, we seek to address the uncertainty in SOC stock prediction by assessing relationships between SOC stocks and grazing land condition indicators. We reviewed the literature to identify land condition indicators for analysis and tested relationships between identified land condition indicators and SOC stock using data from a paired-site sampling experiment (10 sites). We subsequently collated SOC stock datasets at two scales (quadrat and paddock) from across northern Australia (329 sites) to compare with the findings of the paired-site sampling experiment with the aim of identifying the land condition indicators that had the strongest relationship with SOC stock. The land condition indicators most closely correlated with SOC stocks across datasets and analysis scales were tree basal area, tree canopy cover, ground cover, pasture biomass and the density of perennial grass tussocks. In combination with soil type, these indicators accounted for up to 42% of the variation in the residuals after climate effects were removed. However, we found that responses often interacted with soil type, adding complexity and increasing the uncertainty associated with predicting SOC stock change at any particular location. We recommend that caution be exercised when considering SOC offset projects in northern Australian grazing lands due to the risk of incorrectly predicting changes in SOC stocks with change in land condition indicators and management activities for a particular paddock or property. Despite the uncertainty for generating SOC sequestration income, undertaking management activities to improve land condition is likely to have desirable complementary benefits such as improving productivity and profitability as well as reducing adverse environmental impact.
Resumo:
"March 1988."
Resumo:
Runoff, soil loss, and nutrient loss were assessed on a Red Ferrosol in tropical Australia over 3 years. The experiment was conducted using bounded, 100-m(2) field plots cropped to peanuts, maize, or grass. A bare plot, without cover or crop, was also instigated as an extreme treatment. Results showed the importance of cover in reducing runoff, soil loss, and nutrient loss from these soils. Runoff ranged from 13% of incident rainfall for the conventional cultivation to 29% under bare conditions during the highest rainfall year, and was well correlated with event rainfall and rainfall energy. Soil loss ranged from 30 t/ha. year under bare conditions to <6 t/ha. year under cropping. Nutrient losses of 35 kg N and 35 kg P/ha. year under bare conditions and 17 kg N and 11 kg P/ha. year under cropping were measured. Soil carbon analyses showed a relationship with treatment runoff, suggesting that soil properties influenced the rainfall runoff response. The cropping systems model PERFECT was calibrated using runoff, soil loss, and soil water data. Runoff and soil loss showed good agreement with observed data in the calibration, and soil water and yield had reasonable agreement. Longterm runs using historical weather data showed the episodic nature of runoff and soil loss events in this region and emphasise the need to manage land using protective measures such as conservation cropping practices. Farmers involved in related, action-learning activities wished to incorporate conservation cropping findings into their systems but also needed clear production benefits to hasten practice change.
Resumo:
The proposed project focuses on developing research-based indicators that growers and extensionists can use to assess soil health status (including key chemical, physical and biological variables), as well as extension approaches to communicate soil health.
Resumo:
Work with Land and Water Australia to coordinate soil health work across Queensland and Australia.
Resumo:
Workshops to increase participants understanding and knowledge by farm businesses and healthy catchments farmers about the role of soil health in supporting sustainable through variable circumstances, farm businesses and healthy catchments.