987 resultados para Soil CO2 emission
Emissão de CO2 em um latossolo vermelho coberto com palha sob aplicação de efluente e lodo de esgoto
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
From the end of 2013 and during the following two years, 20 kt of CO2sc are planned to be injected in a saline reservoir (1500 m depth) at the Hontomín site (NE Spain). The target aquifers are Lower Jurassic limestone formations which are sealed by Lower Cretaceous clay units at the Hontomín site (NE Spain). The injection of CO2 is part of the activities committed in the Technology Development phase of the EC-funded OXYCFB300 project (European Energy Program for Recovery – EEPR, http://www.compostillaproject.eu), which include CO2 injection strategies, risk assessment, and testing and validating monitoring methodologies and techniques. Among the monitoring works, the project is intended to prove that present-day technology is able to monitor the evolution of injected CO2 in the reservoir and to detect potential leakage. One of the techniques is the measurement of CO2 flux at the soil–atmosphere interface, which includes campaigns before, during and after the injection operations. In this work soil CO2 flux measurements in the vicinity of oil borehole, drilled in the eighties and named H-1 to H-4, and injection and monitoring wells were performed using an accumulation chamber equipped with an IR sensor. Seven surveys were carried out from November 2009 to summer 2011. More than 4000 measurements were used to determine the baseline flux of CO2 and its seasonal variations. The measured values were low (from 5 to 13 g m−2 day−1) and few outliers were identified, mainly located close to the H-2 oil well. Nevertheless, these values cannot be associated to a deep source of CO2, being more likely related to biological processes, i.e. soil respiration. No anomalies were recognized close to the deep fault system (Ubierna Fault) detected by geophysical investigations. There, the CO2 flux is indeed as low as other measurement stations. CO2 fluxes appear to be controlled by the biological activity since the lowest values were recorded during autumn-winter seasons and they tend to increase in warm periods. Two reference CO2 flux values (UCL50 of 5 g m−2 d−1 for non-ploughed areas in autumn–winter seasons and 3.5 and 12 g m−2 d−1 for in ploughed and non-ploughed areas, respectively, in spring–summer time, and UCL99 of 26 g m−2 d−1 for autumn–winter in not-ploughed areas and 34 and 42 g m−2 d−1 for spring–summer in ploughed and not-ploughed areas, respectively) were calculated. Fluxes higher than these reference values could be indicative of possible leakage during the operational and post-closure stages of the storage project.
Resumo:
This paper describes an assessment of the impact of the enforcement of the European carbon dioxide (CO2) emissions trading scheme on the Portuguese chemical industry, based on cost structure, CO2 emissions, electricity consumption and allocated allowances data from a survey to four Portuguese representative units of the chemical industry sector, and considering scenarios that allow the estimation of increases on both direct and indirect production costs. These estimated cost increases were also compared with similar data from other European Industries, found in the references and with conclusions from simulation studies. Thus, it was possible to ascertain the impact of buying extra CO2 emission permits, which could be considered as limited. It was also found that this impact is somewhat lower than the impacts for other industrial sectors.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics
Resumo:
Here we present an approach that allows the identification of the "key" productive sectors responsible for CO2 emission. For this purpose, we develop an input–output methodology from a supply perspective. We focus on the impact of an increase in the value-added of the different productive sectors on total CO2 emissions and we identify the productive sectors responsible for the increase in CO2 emissions when there is an increase in the income of the economy. The approach shows the contribution of the various sectors to CO2 emission from a production perspective and allows us to identify the sectors that deserve more consideration for mitigation policies. This analysis is complementary to the input–output analysis from a demand perspective. The methodology is applied to the Spanish economy.
Resumo:
CO2 emissions induced by human activities are the major cause of climate change; hence, strong environmental policy that limits the growing dependence on fossil fuel is indispensable. Tradable permits and environmental taxes are the usual tools used in CO2 reduction strategies. Such economic tools provide incentives to polluting industries to reduce their emissions through market signals. The aim of this work is to investigate the direct and indirect effects of an environmental tax on Spanish products and services. We apply an environmentally extended input-output (EIO) model to identify CO2 emission intensities of products and services and, accordingly, we estimate the tax proportional to these intensities. The short-term price effects are analyzed using an input-output price model. The effect of tax introduction on consumption prices and its influence on consumers’ welfare are determined. We also quantify the environmental impacts of such taxation in terms of the reduction in CO2 emissions. The results, based on the Spanish economy for the year 2007, show that sectors with relatively poor environmental profile are subjected to high environmental tax rates. And consequently, applying a CO2 tax on these sectors, increases production prices and induces a slight increase in consumer price index and a decrease in private welfare. The revenue from the tax could be used to counter balance the negative effects on social welfare and also to stimulate the increase of renewable energy shares in the most impacting sectors. Finally, our analysis highlights that the environmental and economic goals cannot be met at the same time with the environmental taxation and this shows the necessity of finding other (complementary or alternative) measures to ensure both the economic and ecological efficiencies. Keywords: CO2 emissions; environmental tax; input-output model, effects of environmental taxation.
Resumo:
Agricultural soils can act as a source or sink of atmospheric C, according to the soil management. This long-term experiment (22 years) was evaluated during 30 days in autumn, to quantify the effect of tillage systems (conventional tillage-CT and no-till-NT) on the soil CO2-C flux in a Rhodic Hapludox in Rio Grande do Sul State, Southern Brazil. A closed-dynamic system (Flux Chamber 6400-09, Licor) and a static system (alkali absorption) were used to measure soil CO2-C flux immediately after soybean harvest. Soil temperature and soil moisture were measured simultaneously with CO2-C flux, by Licor-6400 soil temperature probe and manual TDR, respectively. During the entire month, a CO2-C emission of less than 30 % of the C input through soybean crop residues was estimated. In the mean of a 30 day period, the CO2-C flux in NT soil was similar to CT, independent of the chamber type used for measurements. Differences in tillage systems with dynamic chamber were verified only in short term (daily evaluation), where NT had higher CO2-C flux than CT at the beginning of the evaluation period and lower flux at the end. The dynamic chamber was more efficient than the static chamber in capturing variations in CO2-C flux as a function of abiotic factors. In this chamber, the soil temperature and the water-filled pore space (WFPS), in the NT soil, explained 83 and 62 % of CO2-C flux, respectively. The Q10 factor, which evaluates CO2-C flux dependence on soil temperature, was estimated as 3.93, suggesting a high sensitivity of the biological activity to changes in soil temperature during fall season. The CO2-C flux measured in a closed dynamic chamber was correlated with the static alkali adsorption chamber only in the NT system, although the values were underestimated in comparison to the other, particularly in the case of high flux values. At low soil temperature and WFPS conditions, soil tillage caused a limited increase in soil CO2-C flux.
Resumo:
Two diffuse soil CO2 flux surveys from the southern Lakki plain show that CO2 is mainly released from the hydrothermal explosion craters. The correspondence between high CO2 fluxes and elevated soil temperatures suggests that a flux of hot hydrothermal fluids ascends towards the surface. Steam mostly condenses near the surface and the heat given off is conductively transferred to the atmosphere through the soil, accompanied by a large CO2 flux. Tt was calculated, that 68 t d(-1) of hydrothermal CO2 are released through the total surveyed area of similar to1.3 km(2) Admitting that a steam flux of 2200 t d(-1) accompanies this CO2 flux, the thermal energy released through steam condensation amounts to 58 MW.
Resumo:
Monitoring of soil carbon storage may indicate possible effects of climate change on the terrestrial environment and it is therefore necessary to understand the influence of redox potential and chemical characteristics of humic substances (HS) of Antarctic soil. Five soils from King George Island were used. HS were extracted, quantified and characterized by potentiometry and the content of total carbon and nitrogen determined. HS of these soils had greater aliphatic character, low content of phenolic groups, lower acidity and lower formal standard electrode potential, compared to HS of soils from other regions, suggesting they are more likely to be oxidized.
Resumo:
Transgenic soybean, resistant to glyphosate, is the most dominant transgenic crop grown commercially in the world. Research works on herbicide and insecticide mixtures and their effects on microorganisms are rarely reported. This work aimed to study the impact of glyphosate, endosulfan and their mixtures on the microbial soil activity in soybean crop. The experiment was carried out in a complete randomized block design with four treatments and five replications. The treatments were glyphosate 480 SL [540 g of active ingredient (a.i.) ha-1], endosulfan 350 EC (525 g a.i. ha-1), the glyphosate 480 SL [540 g of active ingredient (a.i.) ha-1] mixed with endosulfan 350 EC (525 g a.i. ha-1) and the control. Microbial activity was evaluated five days after treatment application. Glyphosate application was not an impacting factor for soil CO2 production. Endosulfan application (alone or mixed with glyphosate) suppressed CO2 production by microorganisms in the soil. Microbial biomass and microbial quotient were lower in the treatments using endosulfan alone and in those using endosulfan mixed with glyphosate than in the treatments using glyphosate alone and control.
Resumo:
This paper investigates the extent to which office activity contributes to travel-related CO2 emission. Using ‘end-user’ figures[1], travel accounts for 32% of UK CO2 emission (Commission for Integrated Transport, 2007) and commuting and business travel accounts for a fifth of transport-related CO2 emissions, equating to 6.4% of total UK emissions (Building Research Establishment, 2000). Figures from the Department for Transport (2006) report that 70% of commuting trips were made by car, accounting for 73% of all commuting miles travelled. In assessing the environmental performance of an office building, the paper questions whether commuting and business travel-related CO2 emission is being properly assessed. For example, are office buildings in locations that are easily accessible by public transport being sufficiently rewarded? The de facto method for assessing the environmental performance of office buildings in the UK is the Building Research Establishment’s Environmental Assessment Method (BREEAM). Using data for Bristol, this paper examines firstly whether BREEAM places sufficient weight on travel-related CO2 emission in comparison with building operation-related CO2 emission, and secondly whether the methodology for assigning credits for travel-related CO2 emission efficiency is capable of discerning intra-urban differences in location such as city centre and out-of-town. The results show that, despite CO2 emission per worker from building operation and travel being comparable, there is a substantial difference in the credit-weighting allocated to each. Under the current version of BREEAM for offices, only a maximum of 4% of the available credits can be awarded for ensuring the office location is environmentally sustainable. The results also show that all locations within the established city centre of Bristol will receive maximum BREEAM credits. Given the parameters of the test there is little to distinguish one city centre location from another and out of town only one office location receives any credits. It would appear from these results that the assessment method is not able to discern subtle differences in the sustainability of office locations
Resumo:
Grazing systems represent a substantial percentage of the global anthropogenic flux of nitrous oxide (N2O) as a result of nitrogen addition to the soil. The pool of available carbon that is added to the soil from livestock excreta also provides substrate for the production of carbon dioxide (CO2) and methane (CH4) by soil microorganisms. A study into the production and emission of CO2, CH4 and N2O from cattle urine amended pasture was carried out on the Somerset Levels and Moors, UK over a three-month period. Urine-amended plots (50 g N m−2) were compared to control plots to which only water (12 mg N m−2) was applied. CO2 emission peaked at 5200 mg CO2 m−2 d−1 directly after application. CH4 flux decreased to −2000 μg CH4 m−2 d−1 two days after application; however, net CH4 flux was positive from urine treated plots and negative from control plots. N2O emission peaked at 88 mg N2O m−2 d−1 12 days after application. Subsurface CH4 and N2O concentrations were higher in the urine treated plots than the controls. There was no effect of treatment on subsurface CO2 concentrations. Subsurface N2O peaked at 500 ppm 12 days after and 1200 ppm 56 days after application. Subsurface NO3− concentration peaked at approximately 300 mg N kg dry soil−1 12 days after application. Results indicate that denitrification is the key driver for N2O release in peatlands and that this production is strongly related to rainfall events and water-table movement. N2O production at depth continued long after emissions were detected at the surface. Further understanding of the interaction between subsurface gas concentrations, surface emissions and soil hydrological conditions is required to successfully predict greenhouse gas production and emission.
Resumo:
The pulp- and paper production is a very energy intensive industry sector. Both Sweden and the U.S. are major pulpandpaper producers. This report examines the energy and the CO2-emission connected with the pulp- and paperindustry for the two countries from a lifecycle perspective.New technologies make it possible to increase the electricity production in the integrated pulp- andpaper mill through black liquor gasification and a combined cycle (BLGCC). That way, the mill canproduce excess electricity, which can be sold and replace electricity produced in power plants. In thisprocess the by-products that are formed at the pulp-making process is used as fuel to produce electricity.In pulp- and paper mills today the technology for generating energy from the by-product in aTomlinson boiler is not as efficient as it could be compared to the BLGCC technology. Scenarios havebeen designed to investigate the results from using the BLGCC technique using a life cycle analysis.Two scenarios are being represented by a 1994 mill in the U.S. and a 1994 mill in Sweden.The scenariosare based on the average energy intensity of pulp- and paper mills as operating in 1994 in the U.S.and Sweden respectively. The two other scenarios are constituted by a »reference mill« in the U.S. andSweden using state-of-the-art technology. We investigate the impact of varying recycling rates and totalenergy use and CO2-emissions from the production of printing and writing paper. To economize withthe wood and that way save trees, we can use the trees that are replaced by recycling in a biomassgasification combined cycle (BIGCC) to produce electricity in a power station. This produces extra electricitywith a lower CO2 intensity than electricity generated by, for example, coal-fired power plants.The lifecycle analysis in this thesis also includes the use of waste treatment in the paper lifecycle. Both Sweden and theU.S. are countries that recycle paper. Still there is a lot of paper waste, this paper is a part of the countries municipalsolid waste (MSW). A lot of the MSW is landfilled, but parts of it are incinerated to extract electricity. The thesis hasdesigned special scenarios for the use of MSW in the lifecycle analysis.This report is studying and comparing two different countries and two different efficiencies on theBLGCC in four different scenarios. This gives a wide survey and points to essential parameters to specificallyreflect on, when making assumptions in a lifecycle analysis. The report shows that there arethree key parameters that have to be carefully considered when making a lifecycle analysis of wood inan energy and CO2-emission perspective in the pulp- and paper mill in the U.S. and in Sweden. First,there is the energy efficiency in the pulp- and paper mill, then the efficiency of the BLGCC and last theCO2 intensity of the electricity displaced by BIGCC or BLGCC generatedelectricity. It also show that with the current technology that we havetoday, it is possible to produce CO2 free paper with a waste paper amountup to 30%. The thesis discusses the system boundaries and the assumptions.Further and more detailed research, including amongst others thesystem boundaries and forestry, is recommended for more specificanswers.
Resumo:
Transportation is seen as one of the major sources of CO2 pollutants nowadays. The impact of increased transport in retailing should not be underestimated. Most previous studies have focused on transportation and underlying trips, in general, while very few studies have addressed the specific affects that, for instance, intra-city shopping trips generate. Furthermore, most of the existing methods used to estimate emission are based on macro-data designed to generate national or regional inventory projections. There is a lack of studies using micro-data based methods that are able to distinguish between driver behaviour and the locational effects induced by shopping trips, which is an important precondition for energy efficient urban planning. The aim of this study is to implement a micro-data method to estimate and compare CO2 emission induced by intra-urban car travelling to a retail destination of durable goods (DG), and non-durable goods (NDG). We estimate the emissions from aspects of travel behaviour and store location. The study is conducted by means of a case study in the city of Borlänge, where GPS tracking data on intra-urban car travel is collected from 250 households. We find that a behavioural change during a trip towards a CO2 optimal travelling by car has the potential to decrease emission to 36% (DG), and to 25% (NDG) of the emissions induced by car-travelling shopping trips today. There is also a potential of reducing CO2 emissions induced by intra-urban shopping trips due to poor location by 54%, and if the consumer selected the closest of 8 existing stores, the CO2 emissions would be reduced by 37% of the current emission induced by NDG shopping trips.
Resumo:
Os solos agrícolas podem atuar como dreno ou fonte de C atmosférico, dependendo do sistema de manejo adotado. Este estudo foi desenvolvido em experimento de longa duração (22 anos), durante o período de 30 dias do outono, com o objetivo de avaliar o impacto de sistemas de preparo de solo (preparo convencional-PC e plantio direto-PD) nas emissões de C-CO2 de um Latossolo Vermelho distrófico, em Cruz Alta, RS. As emissões de C-CO2 do solo foram avaliadas com câmaras dinâmica (Flux Chamber 6400-09, Licor) e estática (com captação em solução alcalina), imediatamente após a colheita da soja. A temperatura e a umidade do solo foram registradas, concomitantemente com as emissões de C-CO2, por meio de sensor de temperatura e TDR manual, respectivamente, integrantes do Licor-6400. Estimou-se que, em 30 dias, uma quantidade equivalente a menos de 30 % do C aportado pelos resíduos de soja foi emitida na forma de C-CO2. As emissões de C-CO2 no solo em PD foram similares às emissões do solo em PC, independentemente do tipo de câmara utilizada. Diferenças entre sistemas de preparo quanto à emissão de C-CO2, avaliadas com a câmara dinâmica, foram verificadas somente a curto prazo (leituras diárias), com o PD apresentando maiores emissões do que o PC no início do período experimental e menores no final. A câmara dinâmica foi mais eficiente do que a estática em captar as alterações das emissões de C-CO2 em função da variação da temperatura e a porosidade preenchida por água (PPA) no solo em PD, as quais explicaram 83 e 62 % das emissões de C-CO2, respectivamente. O fator Q10, que avalia a sensibilidade da emissão de C-CO2 à temperatura do solo, foi estimado em 3,93, indicando alta sensibilidade da atividade microbiana à temperatura do solo durante o outono. As emissões de C-CO2 registradas no solo em PD com a câmara estática foram correlacionadas às da câmara dinâmica, porém com valores subestimados em relação àquela notadamente nos maiores valores de fluxo. em condições de baixa temperatura e PPA, o preparo de solo induziu limitado incremento de emissão de C-CO2.