983 resultados para Software Packages
Resumo:
Product design decisions can have a significant impact on the financial and operation performance of manufacturing companies. Therefore good analysis of the financial impact of design decisions is required if the profitability of the business is to be maximised. The product design process can be viewed as a chain of decisions which links decisions about the concept to decisions about the detail. The idea of decision chains can be extended to include the design and operation of the 'downstream' business processes which manufacture and support the product. These chains of decisions are not independent but are interrelated in a complex manner. To deal with the interdependencies requires a modelling approach which represents all the chains of decisions, to a level of detail not normally considered in the analysis of product design. The operational, control and financial elements of a manufacturing business constitute a dynamic system. These elements interact with each other and with external elements (i.e. customers and suppliers). Analysing the chain of decisions for such an environment requires the application of simulation techniques, not just to any one area of interest, but to the whole business i.e. an enterprise simulation. To investigate the capability and viability of enterprise simulation an experimental 'Whole Business Simulation' system has been developed. This system combines specialist simulation elements and standard operational applications software packages, to create a model that incorporates all the key elements of a manufacturing business, including its customers and suppliers. By means of a series of experiments, the performance of this system was compared with a range of existing analysis tools (i.e. DFX, capacity calculation, shop floor simulator, and business planner driven by a shop floor simulator).
Resumo:
Replacement of the traditional coil spring with one of more fibre-reinforced plastic sulcated springs is a future possibility. Spring designers of metallic coil springs have design formulae readily available, and software packages specific to coil spring design exist. However, the sulcated spring is at the prototype stage of development, so literature on these springs is very sparse. The thesis contains information on the market for sulcated springs, and their advantages and disadvantages. Literature on other types of fibre reinforced plastic springs has also been reviewed. Design software has been developed for the sulcated spring along similar lines to coil spring design software. In order to develop the software, a theoretical model had to be developed which formed the mathematical basis for the software. The theoretical model is based on a choice of four methods for calculating the flexural rigidity; beam theory, plate theory, and lamination theory assuming isotropic and orthoropic material properties. Experimental results for strain and spring stiffness have been compared with the theoretical model, and were in good agreement. Included in the design software are the results of experimental work on fatigue, and design limiting factors to prevent or warn against impractical designs. Finite element analysis has been used to verify the theoretical model developed, and to find the better approximation to the experimental results. Applications and types of assemblies for the sulcated spring were discussed. Sulcated spring designs for the automotive applications of a suspension, clutch and engine valve spring were found using the design computer software. These sulcated spring designs were within or close to the space of the existing coil spring and yield the same performance. Finally the commercial feasibility of manufacturing the sulcated spring was assessed and compared with the coil spring, to evaluate the plausibility of the sulcated spring replacing the coil spring eventually.
Resumo:
The paper describes a first supercomputer cluster project in Ukraine, its hardware, software and characteristics. The paper shows the performance results received on systems that were built. There are also shortly described software packages made by cluster users that have already made a return of investments into a cluster project.
Resumo:
The paper describes three software packages - the main components of a software system for processing and web-presentation of Bulgarian language resources – parallel corpora and bilingual dictionaries. The author briefly presents current versions of the core components “Dictionary” and “Corpus” as well as the recently developed component “Connection” that links both “Dictionary” and “Corpus”. The components main functionalities are described as well. Some examples of the usage of the system’s web-applications are included.
Resumo:
With the latest development in computer science, multivariate data analysis methods became increasingly popular among economists. Pattern recognition in complex economic data and empirical model construction can be more straightforward with proper application of modern softwares. However, despite the appealing simplicity of some popular software packages, the interpretation of data analysis results requires strong theoretical knowledge. This book aims at combining the development of both theoretical and applicationrelated data analysis knowledge. The text is designed for advanced level studies and assumes acquaintance with elementary statistical terms. After a brief introduction to selected mathematical concepts, the highlighting of selected model features is followed by a practice-oriented introduction to the interpretation of SPSS1 outputs for the described data analysis methods. Learning of data analysis is usually time-consuming and requires efforts, but with tenacity the learning process can bring about a significant improvement of individual data analysis skills.
Resumo:
The civil jury has been under attack in recent years for being unreliable and incompetent. Considering the myriad causes for poor civil juror decision-making, the current investigation explores both procedural and evidentiary issues that impact juror's decisions. Specifically, the first phase of this dissertation examines how jurors (mis)use evidence pertaining to the litigants when determining liability and awarding damages. After investigating how jurors utilize evidence, the focus shifts to exploring the utility of procedural reforms designed to improve decision-making (specifically revising the instructions on the laws in the case and bifurcating the damage phases of the trial). Using the results from the first two phases of the research, the final study involves manipulating pieces of evidence related to the litigants while exploring the effects that revising the judicial instructions have on the utilization of evidence in particular and on decision-making in general. ^ This dissertation was run on-line, allowing participants to access the study materials at their convenience. After giving consent, participants read the scenario of a fictitious product liability case with the litigant manipulations incorporated into the summary. Participants answered several attitudinal, case-specific, and comprehension questions, and were instructed to find in favor of one side and award any damages they felt warranted. Exploratory factor analyses, Probit and linear regressions, and path analyses were used to analyze the data (M-plus and SPSS were the software packages used to conduct the analyses). Results indicated that misuse of evidence was fairly frequent, though the mock jurors also utilized evidence appropriately. Although the results did not support bifurcation as a viable procedural reform, revising the judicial instructions did significantly increase comprehension rates. Trends in the data suggested that better decision-making occurred when the revised instructions were used, thus providing empirical support for this procedural reform as a means of improving civil jury decision-making. Implications for actual trials and attorneys are discussed. ^
Resumo:
During the past three decades, the use of roundabouts has increased throughout the world due to their greater benefits in comparison with intersections controlled by traditional means. Roundabouts are often chosen because they are widely associated with low accident rates, lower construction and operating costs, and reasonable capacities and delay. ^ In the planning and design of roundabouts, special attention should be given to the movement of pedestrians and bicycles. As a result, there are several guidelines for the design of pedestrian and bicycle treatments at roundabouts that increase the safety of both pedestrians and bicyclists at existing and proposed roundabout locations. Different design guidelines have differing criteria for handling pedestrians and bicyclists at roundabout locations. Although all of the investigated guidelines provide better safety (depending on the traffic conditions at a specific location), their effects on the performance of the roundabout have not been examined yet. ^ Existing roundabout analysis software packages provide estimates of capacity and performance characteristics. This includes characteristics such as delay, queue lengths, stop rates, effects of heavy vehicles, crash frequencies, and geometric delays, as well as fuel consumption, pollutant emissions and operating costs for roundabouts. None of these software packages, however, are capable of determining the effects of various pedestrian crossing locations, nor the effect of different bicycle treatments on the performance of roundabouts. ^ The objective of this research is to develop simulation models capable of determining the effect of various pedestrian and bicycle treatments at single-lane roundabouts. To achieve this, four models were developed. The first model simulates a single-lane roundabout without bicycle and pedestrian traffic. The second model simulates a single-lane roundabout with a pedestrian crossing and mixed flow bicyclists. The third model simulates a single-lane roundabout with a combined pedestrian and bicycle crossing, while the fourth model simulates a single-lane roundabout with a pedestrian crossing and a bicycle lane at the outer perimeter of the roundabout for the bicycles. Traffic data was collected at a modern roundabout in Boca Raton, Florida. ^ The results of this effort show that installing a pedestrian crossing on the roundabout approach will have a negative impact on the entry flow, while the downstream approach will benefit from the newly created gaps by pedestrians. Also, it was concluded that a bicycle lane configuration is more beneficial for all users of the roundabout instead of the mixed flow or combined crossing. Installing the pedestrian crossing at one-car length is more beneficial for pedestrians than two- and three-car lengths. Finally, it was concluded that the effect of the pedestrian crossing on the vehicle queues diminishes as the distance between the crossing and the roundabout increases. ^
Resumo:
The objective in this work is to build a rapid and automated numerical design method that makes optimal design of robots possible. In this work, two classes of optimal robot design problems were specifically addressed: (1) When the objective is to optimize a pre-designed robot, and (2) when the goal is to design an optimal robot from scratch. In the first case, to reach the optimum design some of the critical dimensions or specific measures to optimize (design parameters) are varied within an established range. Then the stress is calculated as a function of the design parameter(s), the design parameter(s) that optimizes a pre-determined performance index provides the optimum design. In the second case, this work focuses on the development of an automated procedure for the optimal design of robotic systems. For this purpose, Pro/Engineer© and MatLab© software packages are integrated to draw the robot parts, optimize them, and then re-draw the optimal system parts.
Resumo:
Computed tomography (CT) is a valuable technology to the healthcare enterprise as evidenced by the more than 70 million CT exams performed every year. As a result, CT has become the largest contributor to population doses amongst all medical imaging modalities that utilize man-made ionizing radiation. Acknowledging the fact that ionizing radiation poses a health risk, there exists the need to strike a balance between diagnostic benefit and radiation dose. Thus, to ensure that CT scanners are optimally used in the clinic, an understanding and characterization of image quality and radiation dose are essential.
The state-of-the-art in both image quality characterization and radiation dose estimation in CT are dependent on phantom based measurements reflective of systems and protocols. For image quality characterization, measurements are performed on inserts imbedded in static phantoms and the results are ascribed to clinical CT images. However, the key objective for image quality assessment should be its quantification in clinical images; that is the only characterization of image quality that clinically matters as it is most directly related to the actual quality of clinical images. Moreover, for dose estimation, phantom based dose metrics, such as CT dose index (CTDI) and size specific dose estimates (SSDE), are measured by the scanner and referenced as an indicator for radiation exposure. However, CTDI and SSDE are surrogates for dose, rather than dose per-se.
Currently there are several software packages that track the CTDI and SSDE associated with individual CT examinations. This is primarily the result of two causes. The first is due to bureaucracies and governments pressuring clinics and hospitals to monitor the radiation exposure to individuals in our society. The second is due to the personal concerns of patients who are curious about the health risks associated with the ionizing radiation exposure they receive as a result of their diagnostic procedures.
An idea that resonates with clinical imaging physicists is that patients come to the clinic to acquire quality images so they can receive a proper diagnosis, not to be exposed to ionizing radiation. Thus, while it is important to monitor the dose to patients undergoing CT examinations, it is equally, if not more important to monitor the image quality of the clinical images generated by the CT scanners throughout the hospital.
The purposes of the work presented in this thesis are threefold: (1) to develop and validate a fully automated technique to measure spatial resolution in clinical CT images, (2) to develop and validate a fully automated technique to measure image contrast in clinical CT images, and (3) to develop a fully automated technique to estimate radiation dose (not surrogates for dose) from a variety of clinical CT protocols.
Resumo:
© 2016 Springer Science+Business Media New YorkResearchers studying mammalian dentitions from functional and adaptive perspectives increasingly have moved towards using dental topography measures that can be estimated from 3D surface scans, which do not require identification of specific homologous landmarks. Here we present molaR, a new R package designed to assist researchers in calculating four commonly used topographic measures: Dirichlet Normal Energy (DNE), Relief Index (RFI), Orientation Patch Count (OPC), and Orientation Patch Count Rotated (OPCR) from surface scans of teeth, enabling a unified application of these informative new metrics. In addition to providing topographic measuring tools, molaR has complimentary plotting functions enabling highly customizable visualization of results. This article gives a detailed description of the DNE measure, walks researchers through installing, operating, and troubleshooting molaR and its functions, and gives an example of a simple comparison that measured teeth of the primates Alouatta and Pithecia in molaR and other available software packages. molaR is a free and open source software extension, which can be found at the doi:10.13140/RG.2.1.3563.4961(molaR v. 2.0) as well as on the Internet repository CRAN, which stores R packages.
Resumo:
Laser scanning is a terrestrial laser-imaging system that creates highly accurate three-dimensional images of objects for use in standard computer-aided design software packages. This report describes results of a pilot study to investigate the use of laser scanning for transportation applications in Iowa. After an initial training period on the use of the scanner and Cyclone software, pilot tests were performed on the following projects: intersection and railroad bridge for training purposes; section of highway to determine elevation accuracy and pair of bridges to determine level of detail that can be captured; new concrete pavement to determine smoothness; bridge beams to determine camber for deck-loading calculations; stockpile to determine volume; and borrow pit to determine volume. Results show that it is possible to obtain 2-6 mm precision with the laser scanner as claimed by the manufacturer compared to approximately one-inch precision with aerial photogrammetry using a helicopter. A cost comparison between helicopter photogrammetry and laser scanning showed that laser scanning was approximately 30 percent higher in cost depending on assumptions. Laser scanning can become more competitive to helicopter photogrammetry by elevating the scanner on a boom truck and capturing both sides of a divided roadway at the same time. Two- and three-dimensional drawings were created in MicroStation for one of the scanned highway bridges. It was demonstrated that it is possible to create such drawings within the accuracy of this technology. It was discovered that a significant amount of time is necessary to convert point cloud images into drawings. As this technology matures, this task should become less time consuming. It appears that laser scanning technology does indeed have a place in the Iowa Department of Transportation design and construction toolbox. Based on results from this study, laser scanning can be used cost effectively for preliminary surveys to develop TIN meshes of roadway surfaces. It also appears that this technique can be used quite effectively to measure bridge beam camber in a safer and quicker fashion compared to conventional approaches. Volume calculations are also possible using laser scanning. It seems that measuring quantities of rock could be an area where this technology would be quite beneficial since accuracy is more important with this material compared to soil. Other applications for laser scanning could include developing as-built drawings of historical structures such as the bridges of Madison County. This technology could also be useful where safety is a concern such as accurately measuring the surface of a highway active with traffic or scanning the underside of a bridge damaged by a truck. It is recommended that the Iowa Department of Transportation initially rent the scanner when it is needed and purchase the software. With time, it may be cost justifiable to purchase the scanner as well. Laser scanning consultants can be hired as well but at a higher cost.
Resumo:
Once the preserve of university academics and research laboratories with high-powered and expensive computers, the power of sophisticated mathematical fire models has now arrived on the desk top of the fire safety engineer. It is a revolution made possible by parallel advances in PC technology and fire modelling software. But while the tools have proliferated, there has not been a corresponding transfer of knowledge and understanding of the discipline from expert to general user. It is a serious shortfall of which the lack of suitable engineering courses dealing with the subject is symptomatic, if not the cause. The computational vehicles to run the models and an understanding of fire dynamics are not enough to exploit these sophisticated tools. Too often, they become 'black boxes' producing magic answers in exciting three-dimensional colour graphics and client-satisfying 'virtual reality' imagery. As well as a fundamental understanding of the physics and chemistry of fire, the fire safety engineer must have at least a rudimentary understanding of the theoretical basis supporting fire models to appreciate their limitations and capabilities. The five day short course, "Principles and Practice of Fire Modelling" run by the University of Greenwich attempt to bridge the divide between the expert and the general user, providing them with the expertise they need to understand the results of mathematical fire modelling. The course and associated text book, "Mathematical Modelling of Fire Phenomena" are aimed at students and professionals with a wide and varied background, they offer a friendly guide through the unfamiliar terrain of mathematical modelling. These concepts and techniques are introduced and demonstrated in seminars. Those attending also gain experience in using the methods during "hands-on" tutorial and workshop sessions. On completion of this short course, those participating should: - be familiar with the concept of zone and field modelling; - be familiar with zone and field model assumptions; - have an understanding of the capabilities and limitations of modelling software packages for zone and field modelling; - be able to select and use the most appropriate mathematical software and demonstrate their use in compartment fire applications; and - be able to interpret model predictions. The result is that the fire safety engineer is empowered to realise the full value of mathematical models to help in the prediction of fire development, and to determine the consequences of fire under a variety of conditions. This in turn enables him or her to design and implement safety measures which can potentially control, or at the very least reduce the impact of fire.
Resumo:
BACKGROUND: Several analysis software packages for myocardial blood flow (MBF) quantification from cardiac PET studies exist, but they have not been compared using concordance analysis, which can characterize precision and bias separately. Reproducible measurements are needed for quantification to fully develop its clinical potential. METHODS: Fifty-one patients underwent dynamic Rb-82 PET at rest and during adenosine stress. Data were processed with PMOD and FlowQuant (Lortie model). MBF and myocardial flow reserve (MFR) polar maps were quantified and analyzed using a 17-segment model. Comparisons used Pearson's correlation ρ (measuring precision), Bland and Altman limit-of-agreement and Lin's concordance correlation ρc = ρ·C b (C b measuring systematic bias). RESULTS: Lin's concordance and Pearson's correlation values were very similar, suggesting no systematic bias between software packages with an excellent precision ρ for MBF (ρ = 0.97, ρc = 0.96, C b = 0.99) and good precision for MFR (ρ = 0.83, ρc = 0.76, C b = 0.92). On a per-segment basis, no mean bias was observed on Bland-Altman plots, although PMOD provided slightly higher values than FlowQuant at higher MBF and MFR values (P < .0001). CONCLUSIONS: Concordance between software packages was excellent for MBF and MFR, despite higher values by PMOD at higher MBF values. Both software packages can be used interchangeably for quantification in daily practice of Rb-82 cardiac PET.
Resumo:
Starting in December 1982 the University of Nottingham decided to phototypeset almost all of its examination papers `in house' using the troff, tbl and eqn programs running under UNIX. This tutorial lecture highlights the features of the three programs with particular reference to their strengths and weaknesses in a production environment. The following issues are particularly addressed: Standards -- all three software packages require the embedding of commands and the invocation of pre-written macros, rather than `what you see is what you get'. This can help to enforce standards, in the absence of traditional compositor skills. Hardware and Software -- the requirements are analysed for an inexpensive preview facility and a low-level interface to the phototypesetter. Mathematical and Technical papers -- the fine-tuning of eqn to impose a standard house style. Staff skills and training -- systems of this kind do not require the operators to have had previous experience of phototypesetting. Of much greater importance is willingness and flexibility in learning how to use computer systems.
Resumo:
Introduction Prediction of soft tissue changes following orthognathic surgery has been frequently attempted in the past decades. It has gradually progressed from the classic “cut and paste” of photographs to the computer assisted 2D surgical prediction planning; and finally, comprehensive 3D surgical planning was introduced to help surgeons and patients to decide on the magnitude and direction of surgical movements as well as the type of surgery to be considered for the correction of facial dysmorphology. A wealth of experience was gained and numerous published literature is available which has augmented the knowledge of facial soft tissue behaviour and helped to improve the ability to closely simulate facial changes following orthognathic surgery. This was particularly noticed following the introduction of the three dimensional imaging into the medical research and clinical applications. Several approaches have been considered to mathematically predict soft tissue changes in three dimensions, following orthognathic surgery. The most common are the Finite element model and Mass tensor Model. These were developed into software packages which are currently used in clinical practice. In general, these methods produce an acceptable level of prediction accuracy of soft tissue changes following orthognathic surgery. Studies, however, have shown a limited prediction accuracy at specific regions of the face, in particular the areas around the lips. Aims The aim of this project is to conduct a comprehensive assessment of hard and soft tissue changes following orthognathic surgery and introduce a new method for prediction of facial soft tissue changes. Methodology The study was carried out on the pre- and post-operative CBCT images of 100 patients who received their orthognathic surgery treatment at Glasgow dental hospital and school, Glasgow, UK. Three groups of patients were included in the analysis; patients who underwent Le Fort I maxillary advancement surgery; bilateral sagittal split mandibular advancement surgery or bimaxillary advancement surgery. A generic facial mesh was used to standardise the information obtained from individual patient’s facial image and Principal component analysis (PCA) was applied to interpolate the correlations between the skeletal surgical displacement and the resultant soft tissue changes. The identified relationship between hard tissue and soft tissue was then applied on a new set of preoperative 3D facial images and the predicted results were compared to the actual surgical changes measured from their post-operative 3D facial images. A set of validation studies was conducted. To include: • Comparison between voxel based registration and surface registration to analyse changes following orthognathic surgery. The results showed there was no statistically significant difference between the two methods. Voxel based registration, however, showed more reliability as it preserved the link between the soft tissue and skeletal structures of the face during the image registration process. Accordingly, voxel based registration was the method of choice for superimposition of the pre- and post-operative images. The result of this study was published in a refereed journal. • Direct DICOM slice landmarking; a novel technique to quantify the direction and magnitude of skeletal surgical movements. This method represents a new approach to quantify maxillary and mandibular surgical displacement in three dimensions. The technique includes measuring the distance of corresponding landmarks digitized directly on DICOM image slices in relation to three dimensional reference planes. The accuracy of the measurements was assessed against a set of “gold standard” measurements extracted from simulated model surgery. The results confirmed the accuracy of the method within 0.34mm. Therefore, the method was applied in this study. The results of this validation were published in a peer refereed journal. • The use of a generic mesh to assess soft tissue changes using stereophotogrammetry. The generic facial mesh played a major role in the soft tissue dense correspondence analysis. The conformed generic mesh represented the geometrical information of the individual’s facial mesh on which it was conformed (elastically deformed). Therefore, the accuracy of generic mesh conformation is essential to guarantee an accurate replica of the individual facial characteristics. The results showed an acceptable overall mean error of the conformation of generic mesh 1 mm. The results of this study were accepted for publication in peer refereed scientific journal. Skeletal tissue analysis was performed using the validated “Direct DICOM slices landmarking method” while soft tissue analysis was performed using Dense correspondence analysis. The analysis of soft tissue was novel and produced a comprehensive description of facial changes in response to orthognathic surgery. The results were accepted for publication in a refereed scientific Journal. The main soft tissue changes associated with Le Fort I were advancement at the midface region combined with widening of the paranasal, upper lip and nostrils. Minor changes were noticed at the tip of the nose and oral commissures. The main soft tissue changes associated with mandibular advancement surgery were advancement and downward displacement of the chin and lower lip regions, limited widening of the lower lip and slight reversion of the lower lip vermilion combined with minimal backward displacement of the upper lip were recorded. Minimal changes were observed on the oral commissures. The main soft tissue changes associated with bimaxillary advancement surgery were generalized advancement of the middle and lower thirds of the face combined with widening of the paranasal, upper lip and nostrils regions. In Le Fort I cases, the correlation between the changes of the facial soft tissue and the skeletal surgical movements was assessed using PCA. A statistical method known as ’Leave one out cross validation’ was applied on the 30 cases which had Le Fort I osteotomy surgical procedure to effectively utilize the data for the prediction algorithm. The prediction accuracy of soft tissue changes showed a mean error ranging between (0.0006mm±0.582) at the nose region to (-0.0316mm±2.1996) at the various facial regions.