973 resultados para Sodium-restricted diet
Resumo:
Nutritional management is essential for Phenylketonuria (PKU) treatment, consisting in a semi-synthetic and low phenylalanine (Phe) diet, which includes strictly controlled amounts of low protein natural foods (essentially fruits and vegetables) supplemented with Phe-free protein substitutes and dietetic low-protein products. PKU diet has to be carefully planned, providing the best ingredient combinations, so that patients can achieve good metabolic control and an adequate nutritional status. Hereupon, it is mandatory to know the detailed composition of natural and/or cooked foodstuffs prepared specifically for these patients. We intended to evaluate sixteen dishes specifically prepared for PKU patients, regarding the nutritional composition, Phe and tyrosine (Tyr) contents, fatty acids profile, and vitamins E and B12 amounts. The nutritional composition of the cooked samples was 15.5–92.0 g/100 g, for moisture; 0.7–3.2 g/100 g, for protein; 0.1–25.0 g/100 g, for total fat; and 5.0–62.0 g/100 g, for total carbohydrates. Fatty acids profile and vitamin E amount reflected the type of fat used. All samples were poor in vitamin B12 (0.3–0.8 μg/100 g). Boiled rice presented the highest Phe content: 50.3 mg/g of protein. These data allow a more accurate calculation of the diet portions to be ingested by the patients according to their individual tolerance.
Resumo:
Evidence shows that cardiac hypertrophy (CH) is a risk factor for many cardiovascular diseases. Several stimuli may cause CH-like manifestations and promote volume or pressure overload. Exercise-induced cardiac hypertrophy is an expected adaptation to regular exercise training. Salt intake has been shown to be the most important determinant of blood pressure in different populations. The purpose of the present work was to verify the influence of physical exercise and sodium intake on the blood pressure and myocardium. The study was performed on 36 rats divided into six groups: Group I (diet without salt overload), Group II (diet without salt overload and swimming), Group III (diet with 2.5% NaCl solution and swimming), Group IV (diet with 5% NaCl solution and swimming), Group V (diet with 2.5% NaCl solution without exercise), Group VI (diet with 5% NaCl solution without exercise). The arterial pressure was significantly lower in Group I when compared with Group IV. The ratio of cardiac mass/body mass was increased in Groups III and IV. In conclusion, there was evidence that exercise training and NaCl intake promotes arterial hypertension and cardiac hypertrophy.
Resumo:
A Socioecological Field Study.This monograph reports on a 26 month socioecological study of black spider monkeys (Ateles paniscus paniscus)in the Raleigh-vallen — Voltzberg Nature Reserve, Surinam. It recognizes the fundamental importance of food to the behavior and the regulation of population density fox this primate. It clarifies the complex temporal and spatial effects of tropical rain forest food sources on the behavior of a group of spider monkeys, concentrating on food category, food plant identity and phenology, and quantity, density and dispersion of the most important food sources. In addition, the present study describes habitat choice, optimal feeding strategy and sexual behavior of the spider monkey, and discusses implications of diet for social behavior. This study is also fundamental to conservation. Specialized in eating mature fruits, the spider monkey is a very important dispersal agent for many trees and lianes, particularly canopy species. However, the spider monkey is probably the most vulnerable monkey species in Surinam and it is disappearing rapidly throughout the remainder of its range. Unfortunately, it is large and noisy and can be easily tracked and hunted. It is largely restricted to undisturbed high forest, and consequently habitat destruction has more effect on it than on most other species. Together with its slow reproductive rate (a female gives birth only once every four or five years), this means that the species is poorly adapted to recover from exploitation. In order to implement proper measures for conservation, data on forest type preferences, diet and social behavior of the species, or on closely related species, in undisturbed areas, such as the one described in this monograph, are essential tools for assessing the potential of proposed protected areas.
Resumo:
Objective: To measure renal tissue oxygenation in young normo-and hypertensive volunteers under conditions of salt loading and depletion using blood oxygen level dependent magnetic resonance imaging (BOLD-MRI). Design and Methods: Ten normotensive (NT) male volunteers (age 26.5_7.4 y) and eight non-treated, hypertensive (HT) male volunteers (age 28.8_5.7 y) were studied after one week on a high salt (HS) regimen (6g of salt/day added to their normal regimen) and again after one week of a low sodium diet (LS). On the 8th day, BOLD-MRI was performed under standard hydration conditions. Four coronal slices were selected in each kidney, and combination sequence was used to acquire T2* weighted images. The mean R2* (1/T2*) was measured to determine cortical and medullar oxygenation. Results: Baseline characteristics and their changes are shown in the table. The mean cortical R2* was not different under conditions of HS or LS (17.8_1.3 vs. 18.2_0.6 respectively in NT group, p_0.27; 17.4_0.6 vs 17.8_0.9 in HT group, p_0.16). However, the mean medullary R2* was significantly lower under LS conditions in both groups (31.3_0.6 vs 28.1_0.8 in NT group, p_0.05; 30.3_0.8 vs 27.9_1.5 in HT group, p_0.05), corresponding to higher medullary oxygenation as compared to HS conditions, without significant changes in hemoglobin or hematocrit values. The salt induced changes in medullary oxygenation were comparable in the two groups (ANOVA, p_0.1). Conclusion: Dietary sodium restriction leads to increased renal medullary oxygenation compared to high sodium intake in normo-and hypertensive subjects. This observation may in part explain the potential renal benefits of a low sodium intake.
Resumo:
Aldosterone promotes electrogenic sodium reabsorption through the amiloride-sensitive epithelial sodium channel (ENaC). Here, we investigated the importance of ENaC and its positive regulator channel-activating protease 1 (CAP1/Prss8) in colon. Mice lacking the αENaC subunit in colonic superficial cells (Scnn1a(KO)) were viable, without fetal or perinatal lethality. Control mice fed a regular or low-salt diet had a significantly higher amiloride-sensitive rectal potential difference (∆PDamil) than control mice fed a high-salt diet. In Scnn1a(KO) mice, however, this salt restriction-induced increase in ∆PDamil did not occur, and the circadian rhythm of ∆PDamil was blunted. Plasma and urinary sodium and potassium did not change with regular or high-salt diets or potassium loading in control or Scnn1a(KO) mice. However, Scnn1a(KO) mice fed a low-salt diet lost significant amounts of sodium in their feces and exhibited high plasma aldosterone and increased urinary sodium retention. Mice lacking the CAP1/Prss8 in colonic superficial cells (Prss8(KO)) were viable, without fetal or perinatal lethality. Compared with controls, Prss8(KO) mice fed regular or low-salt diets exhibited significantly reduced ∆PDamil in the afternoon, but the circadian rhythm was maintained. Prss8(KO) mice fed a low-salt diet also exhibited sodium loss through feces and higher plasma aldosterone levels. Thus, we identified CAP1/Prss8 as an in vivo regulator of ENaC in colon. We conclude that, under salt restriction, activation of the renin-angiotensin-aldosterone system in the kidney compensated for the absence of ENaC in colonic surface epithelium, leading to colon-specific pseudohypoaldosteronism type 1 with mineralocorticoid resistance without evidence of impaired potassium balance.
Resumo:
BACKGROUND: Sodium wasting during the night has been postulated as a potential pathophysiological mechanism in patients suffering from orthostatic hypotension due to severe autonomic deficiency. METHODS: In this study, the diurnal variations in creatinine clearance, sodium excretion and segmental renal tubular handling of sodium were evaluated in 18 healthy subjects and 20 young patients with orthostatic hypotension (OH). In addition, 24-hour ambulatory blood pressure and the neuro-hormonal response to changes in posture were determined. The patients and their controls were studied on a free sodium intake. In a second protocol, 10 controls and 10 patients were similarly investigated after one week of a high salt diet (regular diet + 6 g NaCl/day). RESULTS: Our results demonstrate that, in contrast to normal subjects in whom no significant changes in glomerular filtration, sodium excretion and segmental sodium reabsorption were observed throughout the day, patients with OH were characterized by a significant increase in glomerular filtration rate during the nighttime (P = 0.03) and significant increases in urinary lithium excretion (P < 0.05) and lithium clearance (P = 0.05) during the night, suggesting a decreased proximal reabsorption of sodium. On a high sodium diet, the symptoms of orthostatic hypotension and the circadian variations in sodium reabsorption were significantly blunted. CONCLUSIONS: These results suggest that, while the patient is in a supine position the effective blood volume of those with OH becomes excessive due to the increased venous return. Hence, the kidney responds with an increase in glomerular filtration and a relative escape of sodium from the proximal tubular segments. These circadian variations in renal sodium handling may contribute to the maintenance of the orthostatic syndrome.
Resumo:
Ubiquitylation plays an important role in the control of Na⁺ homeostasis by the kidney. It is well established that the epithelial Na⁺ channel ENaC is regulated by the ubiquitin-protein ligase NEDD4-2, limiting ENaC cell surface expression and activity. Ubiquitylation can be reversed by the action of deubiquitylating enzymes (DUBs). One such DUB, USP2-45, was identified previously as an aldosterone-induced protein in the kidney and is also a circadian output gene. In heterologous expression systems, USP2-45 binds to ENaC, deubiquitylates it, and enhances channel density and activity at the cell surface. Because the role of USP2-45 in renal Na⁺ transport had not been studied in vivo, we investigated here the effect of Usp2 gene inactivation in this process. We demonstrate first that USP2-45 protein has a rhythmic expression with a peak at ZT12. Usp2-KO mice did not show any differences from wild-type littermates with respect to the diurnal control of Na⁺ or K⁺ urinary excretion and plasma levels either on a standard diet or after acute and chronic changes to low- and high-Na⁺ diets, respectively. Moreover, they had similar aldosterone levels on either a low- or high-Na⁺ diet. Blood pressure measurements using telemetry did not reveal variations compared with control mice. Usp2-KO mice did not display alterations in expression of genes involved in sodium homeostasis or the ubiquitin system, as evidenced by transcriptome analysis in the kidney. Our data suggest that USP2 does not play a primary role in the control of Na⁺ balance or blood pressure.
Resumo:
Selostus: Rypsipuristeen asteittainen korvaaminen pellavapuristeella lypsylehmien säilörehuun perustuvassa ruokinnassa
Resumo:
Selostus: Väkirehuun lisätyn glyserolin tai vapaiden rasvahappojen tai näiden yhdistelmän vaikutus maidontuotantoon ja pötsifermentaatioon ruokittaessa lypsylehmiä säilörehuun perustuvalla ruokinnalla
Resumo:
Selostus: Ohrarehu ja tärkkelysrankki kasvavien lihanautojen säilörehuun perustuvassa ruokinnassa
Resumo:
The mechanisms sustaining high blood pressure in conscious one-kidney, one-clip Goldblatt rats were evaluated with the use of SK&F 64139, a phenylethanolamine N-methyltransferase inhibitor capable of crossing the blood-brain barrier and of captopril, an angiotensin converting enzyme inhibitor. The rats were studied 3 weeks after left renal artery clipping and contralateral nephrectomy. During the developmental phase of hypertension, two groups of rats were maintained on a regular salt (RNa) intake, whereas two other groups were given a low salt (LNa) diet. On the day of the experiment, the base-line mean blood pressure measured in the LNa rats (177.4 +/- 5.2 mm Hg, mean +/- S.E., n = 15) was similar to that measured in the RNa rats (178.7 +/- 5.4 mm Hg, n = 16). SK&F 64139 (12.5 mg p.o.) induced a significantly more pronounced (P less than .001) blood pressure decrease in the RNa rats (-25.6 +/- 3.6 mm Hg, n = 8) than in the LNa rats (-4.3 +/- 3.3 mm Hg, n = 7) during a 90-min observation period. On the other hand, captopril (10 mg p.o.) normalized blood pressure in LNa rats (n = 8), but produced only a 13.4 mm Hg blood pressure drop in RNa rats (n = 8). RNa rats treated with SK&F 64139 were found to have decreased phenylethanolamine N-methyltransferase activity by an average 80% in selected brain stem nuclei when compared with nontreated rats. No significant difference in plasma catecholamine levels was found between the RNa and LNa rats. These results suggest that, in this experimental model of hypertension, the sodium ion might increase the model of hypertension, the sodium ion might increase the vasoconstrictor contribution of the sympathetic system via a centrally mediated neurogenic mechanism while at the same time it decreases the renin-dependency of the high blood pressure.
Resumo:
Selostus: Natrium- ja kaliumlannoituksen vaikutus timotein ravintoarvoon
Resumo:
Selostus: Ureoidun oljen soveltuvuus risteytysemojen talviruokintaan kahdella eri ruokintatasolla