921 resultados para Small-angle neutron scattering (SANS)
In-situ observation of drying process of a latex droplet by synchrotron small-angle X-ray scattering
Resumo:
The deformation mechanism of a styrene/n-butyl acrylate copolymer latex film subjected to uniaxial tensile stress was studied by small-angle X-ray scattering. The influence of annealing at 23, 60, 80, and 100 degrees C for 4 h on microscopic deformation processes was elucidated. It was demonstrated that the microscopic deformation mechanism of the latex films transformed gradually from nonaffine deformation behavior to affine deformation behavior with increasing annealing temperature.
Resumo:
Synchrotron small angle X-ray scattering was used to study the deformation mechanism of high-density polyethylene that was stretched beyond the natural draw ratio. New insight into the cooperative deformational behavior being mediated via slippage of micro-fibrils was gained. The scattering data confirm on the one hand the model proposed by Peterlin on the static structure of oriented polyethylene being composed of oriented fibrils, which are built by bundles of micro-fibrils. On the other hand it was found that deformation is mediated by the slippage of the micro-fibrils and not the slippage of the fibrils. In the micro-fibrils, the polymer chains are highly oriented both in the crystalline and in the amorphous regions. When stretching beyond the natural draw ratio mainly slippage of micro-fibrils past each other takes place. The thickness of the interlamellar amorphous layers increases only slightly. The coupling force between micro-fibrils increases during stretching due to inter-microfibrillar polymer segments being stretched taut thus increasingly impeding further sliding of the micro-fibrils leading finally to slippage of the fibrils.
Resumo:
Small-angle X-ray scattering (SAXS) and electron paramagnetic resonance (EPR) have been carried out to investigate the structure of the self-aggregates of two phenothiazine drugs, chlorpromazine (CPZ) and trifluoperazine (TFP), in aqueous solution. In the SAXS studies, drug solutions of 20 and 60 mM, at pH 4.0 and 7.0, were investigated and the best data fittings were achieved assuming several different particle form factors with a homogeneous electron density distribution in respect to the water environment. Because of the limitation of scattering intensity in the q range above 0.15 angstrom(-1), precise determination of the aggregate shape was not possible and all of the tested models for ellipsoids, cylinders, or parallelepipeds fitted the experimental data equally well. The SAXS data allows inferring, however, that CPZ molecules might self-assemble in a basis set of an orthorhombic cell, remaining as nanocrystallites in solution. Such nanocrystals are composed of a small number of unit cells (up to 10, in c-direction), with CPZ aggregation numbers of 60-80. EPR spectra of 5- and 16-doxyl stearic acids bound to the aggregates were analyzed through simulation, and the dynamic and magnetic parameters were obtained. The phenothiazine concentration in EPR experiments was in the range of 5-60 mM. Critical aggregation concentration of TFP is lower than that for CPZ, consistent with a higher hydrophobicity of TFP. At acidic pH 4.0 a significant residual motion of the nitroxide relative to the aggregate is observed, and the EPR spectra and corresponding parameters are similar to those reported for aqueous surfactant micelles. However, at pH 6.5 a significant motional restriction is observed, and the nitroxide rotational correlation times correlate very well with those estimated for the whole aggregated particle from SAXS data. This implies that the aggregate is densely packed at this pH and that the nitroxide is tightly bound to it producing a strongly immobilized EPR spectrum. Besides that, at pH 6.5 the differences in motional restriction observed between 5- and 16-DSA are small, which is different from that observed for aqueous surfactant micelles.
Resumo:
Absolute calibration relates the measured (arbitrary) intensity to the differential scattering cross section of the sample, which contains all of the quantitative information specific to the material. The importance of absolute calibration in small-angle scattering experiments has long been recognized. This work details the absolute calibration procedure of a small-angle X-ray scattering instrument from Bruker AXS. The absolute calibration presented here was achieved by using a number of different types of primary and secondary standards. The samples were: a glassy carbon specimen, which had been independently calibrated from neutron radiation; a range of pure liquids, which can be used as primary standards as their differential scattering cross section is directly related to their isothermal compressibility; and a suspension of monodisperse silica particles for which the differential scattering cross section is obtained from Porod's law. Good agreement was obtained between the different standard samples, provided that care was taken to obtain significant signal averaging and all sources of background scattering were accounted for. The specimen best suited for routine calibration was the glassy carbon sample, due to its relatively intense scattering and stability over time; however, initial calibration from a primary source is necessary. Pure liquids can be used as primary calibration standards, but the measurements take significantly longer and are, therefore, less suited for frequent use.
Resumo:
Time- and position-resolved synchrotron small angle X-ray scattering data were acquired from samples of two Australian coal seams: Bulli seam (Bulli 4, Ro=1.42%, Sydney Basin), which naturally contains CO2 and Baralaba seam (Ro=0.67%, Bowen Basin), a potential candidate for sequestering CO2. This experimental approach has provided unique, pore-size-specific insights into the kinetics of CO2 sorption in the micro- and small mesopores (diameter 5 to 175 Å) and the density of the sorbed CO2 at reservoir-like conditions of temperature and hydrostatic pressure. For both samples, at pressures above 5 bar, the density of CO2 confined in pores was found to be uniform, with no densification in near-wall regions. In the Bulli 4 sample, CO2 first flooded the slit pores between polyaromatic sheets. In the pore-size range analysed, the confined CO2 density was close to that of the free CO2. The kinetics data are too noisy for reliable quantitative analysis, but qualitatively indicate faster kinetics in mineral-matter-rich regions. In the Baralaba sample, CO2 preferentially invaded the smallest micropores and the confined CO2 density was up to five times that of the free CO2. Faster CO2 sorption kinetics was found to be correlated with higher mineral matter content but, the mineral-matter-rich regions had lower-density CO2 confined in their pores. Remarkably, the kinetics was pore-size dependent, being faster for smaller pores. These results suggest that injection into the permeable section of an interbedded coal-clastic sequence could provide a viable combination of reasonable injectivity and high sorption capacity.
Resumo:
The work reported hen was motivated by a desire to verify the existence of structure - specifically MP-rich clusters induced by sodium bromide (NaBr) in the ternary liquid mixture 3-methylpyridine (Mf) + water(W) + NaBr. We present small-angle X-ray scattering (SAXS) measurements in this mixture. These measurements were obtained at room temperature (similar to 298 K) in the one-phase region (below the relevant lower consolute points, T(L)s) at different values of X (i.e., X = 0.02 - 0.17), where X is the weight fraction of NaBr in the mixture. Cluster-size distribution, estimated on the assumption that the clusters are spherical, shows systematic behaviour in that the peak of the distribution shifts rewards larger values of cluster radius as X increases. The largest spatial extent of the clusters (similar to 4.5 nm) is seen at X = 0.17. Data analysis assuming arbitrary shapes and sizes of clusters gives a limiting value of cluster size (- 4.5 nm) that is not very sensitive to X. It is suggested that the cluster size determined may not be the same as the usual critical-point fluctuations far removed from the critical point (T-L). The influence of the additional length scale due to clustering is discussed from the standpoint of crossover from Ising to mean-field critical behaviour, when moving away from the T-L.
Resumo:
Small angle x-ray scattering (SAXS) in a poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) solution has shown the important role of pi-electron conjugation in controlling the chain conformation and assembly. By increasing the extent of conjugation from 30 to 100%, the persistence length (l(p)) increases from 20 to 66 angstrom. Moreover, a pronounced second peak in the pair distribution function has been observed in a fully conjugated chain, at larger length scales. This feature indicates that the chain segments tend to self-assemble as the conjugation along the chain increases. Xylene enhances the rigidity of the PPV backbone to yield extended structures, while tetrahydrofuran solvates the side groups to form compact coils in which the lp is much shorter.
Resumo:
Scattering of X-rays and neutrons has been applied to the study of nanostructures with interesting biological functions. The systems studied were the protein calmodulin and its complexes, bacterial virus bacteriophage phi6, and the photosynthetic antenna complex from green sulfur bacteria, chlorosome. Information gathered using various structure determination methods has been combined to the low resolution information obtained from solution scattering. Conformational changes in calmodulin-ligand complex were studied by combining the directional information obtained from residual dipole couplings in nuclear magnetic resonance to the size information obtained from small-angle X-ray scattering from solution. The locations of non-structural protein components in a model of bacteriophage phi6, based mainly on electron microscopy, were determined by neutron scattering, deuterium labeling and contrast variation. New data are presented on the structure of the photosynthetic antenna complex of green sulfur bacteria and filamentous anoxygenic phototrophs, also known as the chlorosome. The X-ray scattering and electron cryomicroscopy results from this system are interpreted in the context of a new structural model detailed in the third paper of this dissertation. The model is found to be consistent with the results obtained from various chlorosome containing bacteria. The effect of carotenoid synthesis on the chlorosome structure and self-assembly are studied by carotenoid extraction, biosynthesis inhibition and genetic manipulation of the enzymes involved in carotenoid biosynthesis. Carotenoid composition and content are found to have a marked effect on the structural parameters and morphology of chlorosomes.
Resumo:
We report the results of an in situ small-angle x-ray scattering (SAXS) study of the aggregation of gold nanoparticles formed by an interfacial reaction at the toluene-water interface. The SAXS data provide a direct evidence for aggregate formation of nanoparticles having 1.3 nm gold core and an organic shell that gives a core-core separation of about 2.5 nm. Furthermore, the nanoparticles do not occupy all the cites of 13-member cluster. This occupancy decreases with reaction time and indicate reorganization of the clusters that generates planner disklike structures. A gradual increase in fractal dimension from 1.82 to 2.05 also indicate compactification of cluster aggregation with reaction time, the final exponent being close to 2 expected for disklike aggregates.
Resumo:
The effect of confinement on the structure of hemoglobin (Hb) within polymer capsules was investigated here. Hemoglobin transformed from an aggregated state in solution to a nonaggregated state when confined inside the polymer capsules. This was directly confirmed using synchrotron small-angle X-ray scattering (SAXS) studies. The radius of gyration (R-g) and polydispersity (p) of the proteins in the confined state were smaller compared to those in solution. In fact, the R-g value is very similar to theoretical values obtained using protein structures generated from the Protein Databank. In the temperature range (25-85 degrees C, Tm 59 degrees C), the R-g values for the confined Hb remained constant. This observation is in contrary to the increasing R-g values obtained for the bare Hb in solution. This suggested higher thermal stability of Hb when confined inside the polymer capsule than when in solution. Changes in protein configuration were also reflected in the protein function. Confinement resulted in a beneficial enhancement of the electroactivity of Hb. While Hb in solution showed dominance of the cathodic process (Fe3+ -> Fe2+), efficient reversible Fe3+/Fe2+ redox response is observed in the case of the confined Hb. This has important protein functional implications. Confinement allows the electroactive heme to take up positions favorable for various biochemical activities such as sensing of analytes of various sizes from small to macromolecules and controlled delivery of drugs.
Resumo:
The monodisperse polystyrene spheres are assembled into the colloidal crystal on the glass substrate by vertical deposition method, which is aimed at the so-called photonic crystal applications. The structural information of the bulk colloidal crystal is crucial for understanding the crystal growth mechanism and developing the various applications of colloidal crystal. Small-angle X-ray scattering (SAXS) technique was used to obtain the bulk structure of the colloidal crystal at Beamline 1W2A of BSRF. It is found that the SAXS pattern is sensitive to the relative orientation between the colloidal sample and the incident X-ray direction. The crystal lattice was well distinguished and determined by the SAXS data.
Resumo:
The microstructures of hydrogenated microcrystalline silicon (tic-Si: H) thin films, prepared by plasma-enhanced chemical vapor deposition (PECVD), hot wire CVD(HWCVD) and plasma assisted HWCVD (PE-HWCVD), have been analyzed by the small angle x-ray scattering(SAXS) measurement. The SAXS data show that the microstructures of the μ c-Si: H films display different characteristics for different deposition techniques. For films deposited by PECVD, the volume fraction of micro-voids and mean size are smaller than those in HWCVD sample. Aided by suitable ion-bombardment, PE-HWCVD samples show a more compact structure than the HWCVD sample. The microstructure parameters of the μ c-Si: H thin films deposited by two-steps HWCVD and PE-HWCVD with Ar ions are evidently improved. The result of 45° tilting SAXS measurement indicates that the distribution of micro-voids in the film is anisotropic. The Fouriertransform infrared spectra confirm the SAXS data.
Resumo:
A GaAs/AlGaAs two-dimensional electron gas (2 DEG) structure with the high mobility of mu(2K) = 1.78 x 10(6) cm(2)/Vs has been studied by low-temperature Hall and Shubnikov de Hass (SdH) measurements. Quantum lifetimes related to all-angle scattering events reduced from 0.64 ps to 0.52 ps after illuminating by Dingle plots, and transport lifetimes related to large-angle scattering events increasing from 42.3 ps to 67.8 ps. These results show that small-angle scattering events become stronger. It is clear that small-angle scattering events can cause the variation of the widths of the quantum Hall plateaus.