999 resultados para Slot coupled
Resumo:
Increasing concentrations of atmospheric CO2 decrease stomatal conductance of plants and thus suppress canopy transpiration. The climate response to this CO2-physiological forcing is investigated using the Community Atmosphere Model version 3.1 coupled to Community Land Model version 3.0. In response to the physiological effect of doubling CO2, simulations show a decrease in canopy transpiration of 8%, a mean warming of 0.1K over the land surface, and negligible changes in the hydrological cycle. These climate responses are much smaller than what were found in previous modeling studies. This is largely a result of unrealistic partitioning of evapotranspiration in our model control simulation with a greatly underestimated contribution from canopy transpiration and overestimated contributions from canopy and soil evaporation. This study highlights the importance of a realistic simulation of the hydrological cycle, especially the individual components of evapotranspiration, in reducing the uncertainty in our estimation of climatic response to CO2-physiological forcing. Citation: Cao, L., G. Bala, K. Caldeira, R. Nemani, and G.Ban-Weiss (2009), Climate response to physiological forcing of carbon dioxide simulated by the coupled Community Atmosphere Model (CAM3.1) and Community Land Model (CLM3.0).
Resumo:
The G-protein-coupled receptor 54 (muGPR54) cDNA was cloned from the brain of the grey mullet, and its expression level, as well as those of the gonadotropin-releasing hormones (GnRH1, GnRH2, GnRH3) and dopamine receptor D2 (drd2), in the brain, pituitary and ovary of pubertal fish (early, intermediate, advanced) were determined by real-time quantitative RT-PCR (QPCR). The muGPR54 cDNA has an open reading frame of 1140 bp with a predicted 380 amino acid peptide, containing seven putative transmembrane domains and putative N-glycosylation and protein kinase C phosphorylation sites. QPCR results showed that the early stage of puberty in grey mullet is characterized by significantly high levels of expression of GPR54, GnRH and drd2 in the brain relative to the intermediate and advanced stages, except for GnRH1 that increased at the advanced stage of puberty. In the pituitary, drd2 expression declined significantly at the advanced stage relative to levels at the intermediate stage. Ovarian expression of GPR54 significantly increased from the intermediate stage of puberty relative to the early stage while that of GnRH1 acutely increased at the advanced stage of puberty. The ovarian expression of drd2 decreased as puberty progressed, but the changes were not significant. The results suggest the possible role of GPR54 and GnRH in positively regulating pubertal development in grey mullet and the dopaminergic inhibition of reproductive function mediated by drd2.
Resumo:
Artifacts in the form of cross peaks have been observed along two- and three-quantum diagonals in single-quantum two-dimensional correlated (COSY) spectra of several peptides and oligonucleotides. These have been identified as due to the presence of a non-equilibrium state of kind I (a state describable by populations which differ from equilibrium) of strongly coupled spins carried over from one experiment to the next in the COSY algorithm.
Resumo:
The variability of the sea surface salinity (SSS) in the Indian Ocean is studied using a 100-year control simulation of the Community Climate System Model (CCSM 2.0). The monsoon-driven seasonal SSS pattern in the Indian Ocean, marked by low salinity in the east and high salinity in the west, is captured by the model. The model overestimates runoff int the Bay of Bengal due to higher rainfall over the Himalayan-Tibetan regions which drain into the Bay of Bengal through Ganga-Brahmaputra rivers. The outflow of low-salinity water from the Bay of Bengal is to strong in the model. Consequently, the model Indian Ocean SSS is about 1 less than that seen in the climatology. The seasonal Indian Ocean salt balance obtained from the model is consistent with the analysis from climatological data sets. During summer, the large freshwater input into the Bay of Bengal and its redistribution decide the spatial pattern of salinity tendency. During winter, horizontal advection is the dominant contributor to the tendency term. The interannual variability of the SSS in the Indian Ocean is about five times larger than that in coupled model simulations of the North Atlantic Ocean. Regions of large interannual standard deviations are located near river mouths in the Bay of Bengal and in the eastern equatorial Indian Ocean. Both freshwater input into the ocean and advection of this anomalous flux are responsible for the generation of these anomalies. The model simulates 20 significant Indian Ocean Dipole (IOD) events and during IOD years large salinity anomalies appear in the equatorial Indian Ocean. The anomalies exist as two zonal bands: negative salinity anomalies to the north of the equator and positive to the south. The SSS anomalies for the years in which IOD is not present and for ENSO years are much weaker than during IOD years. Significant interannual SSS anomalies appear in the Indian Ocean only during IOD years.
Resumo:
Embryonic development involves diffusion and proliferation of cells, as well as diffusion and reaction of molecules, within growing tissues. Mathematical models of these processes often involve reaction–diffusion equations on growing domains that have been primarily studied using approximate numerical solutions. Recently, we have shown how to obtain an exact solution to a single, uncoupled, linear reaction–diffusion equation on a growing domain, 0 < x < L(t), where L(t) is the domain length. The present work is an extension of our previous study, and we illustrate how to solve a system of coupled reaction–diffusion equations on a growing domain. This system of equations can be used to study the spatial and temporal distributions of different generations of cells within a population that diffuses and proliferates within a growing tissue. The exact solution is obtained by applying an uncoupling transformation, and the uncoupled equations are solved separately before applying the inverse uncoupling transformation to give the coupled solution. We present several example calculations to illustrate different types of behaviour. The first example calculation corresponds to a situation where the initially–confined population diffuses sufficiently slowly that it is unable to reach the moving boundary at x = L(t). In contrast, the second example calculation corresponds to a situation where the initially–confined population is able to overcome the domain growth and reach the moving boundary at x = L(t). In its basic format, the uncoupling transformation at first appears to be restricted to deal only with the case where each generation of cells has a distinct proliferation rate. However, we also demonstrate how the uncoupling transformation can be used when each generation has the same proliferation rate by evaluating the exact solutions as an appropriate limit.
Resumo:
NMR spectra of molecules oriented in thermotropic liquid crystalline media provide information on the molecular structure and order. The spins are generally strongly dipolar coupled and the spectral analyse require the tedious and time consuming numerical iterative calculations. The present study demonstrates the application of multiple quantum spin state selective detection of single quantum transitions for mimicking the homonuclear decoupling and the direct estimation of an element of ordering matrix. This information is utilized to estimate the nearly accurate starting dipolar couplings for iterative calculations. The studies on the spectra of strongly dipolar coupled five and six interacting spin systems are reported.
Resumo:
Red blood cells (RBCs) are the most common type of blood cells in the blood and 99% of the blood cells are RBCs. During the circulation of blood in the cardiovascular network, RBCs squeeze through the tiny blood vessels (capillaries). They exhibit various types of motions and deformed shapes, when flowing through these capillaries with diameters varying between 5 10 µm. RBCs occupy about 45 % of the whole blood volume and the interaction between the RBCs directly influences on the motion and the deformation of the RBCs. However, most of the previous numerical studies have explored the motion and deformation of a single RBC when the interaction between RBCs has been neglected. In this study, motion and deformation of two 2D (two-dimensional) RBCs in capillaries are comprehensively explored using a coupled smoothed particle hydrodynamics (SPH) and discrete element method (DEM) model. In order to clearly model the interactions between RBCs, only two RBCs are considered in this study even though blood with RBCs is continuously flowing through the blood vessels. A spring network based on the DEM is employed to model the viscoelastic membrane of the RBC while the inside and outside fluid of RBC is modelled by SPH. The effect of the initial distance between two RBCs, membrane bending stiffness (Kb) of one RBC and undeformed diameter of one RBC on the motion and deformation of both RBCs in a uniform capillary is studied. Finally, the deformation behavior of two RBCs in a stenosed capillary is also examined. Simulation results reveal that the interaction between RBCs has significant influence on their motion and deformation.
Resumo:
This thesis developed an advanced computational model to investigate the motion and deformation properties of red blood cells in capillaries. The novel model is based on the meshfree particle methods and is capable of modelling the large deformation of red blood cells moving through blood vessels. The developed model was employed to simulate the deformation behaviour of healthy and malaria infected red blood cells as well as the motion of red blood cells in stenosed capillaries.
Resumo:
The nonlinear propagation characteristics of surface acoustic waves on an isotropic elastic solid have been studied in this paper. The solution of the harmonic boundary value problem for Rayleigh waves is obtained as a generalized Fourier series whose coefficients are proportional to the slowly varying amplitudes of the various harmonics. The infinite set of coupled equations for the amplitudes when solved exhibit an oscillatory slow variation signifying a continuous transfer of energy back and forth among the various harmonics. A conservation relation is derived among all the harmonic amplitudes.
Resumo:
The crown ethers, 2,3-benzo-1,4,7,10,13-pentaoxa-cyclopentadeca-2-ene and 2,3, ll,12-dibenzo-l,4,7,10,13,16-hexaoxscyclooctadeca-2,11-diene are incorporated into H,N'-ethylenebis(acetylacetoneimino) nickel(II) and copper(II), phenol, and β-naphthol by diazo coupling reactions. The selective nature of the coupling reaction has-been demonstrated by the isolation of both asymmetric mono- and symmetric bis(glyoxalarylcrownhydrazoneimino) metal(II) complexes. An interesting binuclear complex containing two intramolecularly rearranged (glyoxal-hydrazonearylimino) metal(II) groups joined by 18-crown-6 result8 when bis(arenediazonium)-18-crown-6 is coupled with the metal(I1) Schiff bases. The substituted ethers form cationic salts with NaClO4, KCNS, NH4CNS, 14g(CNS)2 and Ca(CNS)2. All the synthesised ethers exhibit ion selectivity sequence as K+ > Na+ and Ca2+ > Mg2+.
Resumo:
The paper deals with the approximate analysis of non-linear non-conservative systems oftwo degrees of freedom subjected to step-function excitation. The method of averaging of Krylov and Bogoliubov is used to arrive at the approximate equations for amplitude and phase. An example of a spring-mass-damper system is presented to illustrate the method and a comparison with numerical results brings out the validity of the approach.
Resumo:
Trichinella surveillance in wildlife relies on muscle digestion of large samples which are logistically difficult to store and transport in remote and tropical regions as well as labour-intensive to process. Serological methods such as enzyme-linked immunosorbent assays (ELISAs) offer rapid, cost-effective alternatives for surveillance but should be paired with additional tests because of the high false-positive rates encountered in wildlife. We investigated the utility of ELISAs coupled with Western blot (WB) in providing evidence of Trichinella exposure or infection in wild boar. Serum samples were collected from 673 wild boar from a high- and low-risk region for Trichinella introduction within mainland Australia, which is considered Trichinella-free. Sera were examined using both an 'in-house' and a commercially available indirect-ELISA that used excretory secretory (E/S) antigens. Cut-off values for positive results were determined using sera from the low-risk population. All wild boar from the high-risk region (352) and 139/321 (43.3%) of the wild boar from the low-risk region were tested by artificial digestion. Testing by Western blot using E/S antigens, and a Trichinella-specific real-time PCR was also carried out on all ELISA-positive samples. The two ELISAs correctly classified all positive controls as well as one naturally infected wild boar from Gabba Island in the Torres Strait. In both the high- and low-risk populations, the ELISA results showed substantial agreement (k-value = 0.66) that increased to very good (k-value = 0.82) when WB-positive only samples were compared. The results of testing sera collected from the Australian mainland showed the Trichinella seroprevalence was 3.5% (95% C.I. 0.0-8.0) and 2.3% (95% C.I. 0.0-5.6) using the in-house and commercial ELISA coupled with WB respectively. These estimates were significantly higher (P < 0.05) than the artificial digestion estimate of 0.0% (95% C.I. 0.0-1.1). Real-time PCR testing of muscle from seropositive animals did not detect Trichinella DNA in any mainland animals, but did reveal the presence of a second larvae-positive wild boar on Gabba Island, supporting its utility as an alternative, highly sensitive method in muscle examination. The serology results suggest Australian wildlife may have been exposed to Trichinella parasites. However, because of the possibility of non-specific reactions with other parasitic infections, more work using well-defined cohorts of positive and negative samples is required. Even if the specificity of the ELISAs is proven to be low, their ability to correctly classify the small number of true positive sera in this study indicates utility in screening wild boar populations for reactive sera which can be followed up with additional testing. (C) 2013 Elsevier B.V. All rights reserved.