721 resultados para Siple Dome
Resumo:
The EPICA (European Project for Ice Coring in Antarctica) Dome C drilling in East Antarctica has now been completed to a depth of 3260 m, at only a few meters above bedrock. Here we present the new EDC3 chronology, which is based on the use of 1) a snow accumulation and mechanical flow model, and 2) a set of independent age markers along the core. These are obtained by pattern matching of recorded parameters to either absolutely dated paleoclimatic records, or to insolation variations. We show that this new time scale is in excellent agreement with the Dome Fuji and Vostok ice core time scales back to 100 kyr within 1 kyr. Discrepancies larger than 3 kyr arise during MIS 5.4, 5.5 and 6, which points to anomalies in either snow accumulation or mechanical flow during these time periods. We estimate that EDC3 gives accurate event durations within 20% (2 sigma) back to MIS11 and accurate absolute ages with a maximum uncertainty of 6 kyr back to 800 kyr.
Resumo:
A high-resolution deuterium profile is now available along the entire European Project for Ice Coring in Antarctica Dome C ice core, extending this climate record back to marine isotope stage 20.2, ~800,000 years ago. Experiments performed with an atmospheric general circulation model including water isotopes support its temperature interpretation. We assessed the general correspondence between Dansgaard-Oeschger events and their smoothed Antarctic counterparts for this Dome C record, which reveals the presence of such features with similar amplitudes during previous glacial periods. We suggest that the interplay between obliquity and precession accounts for the variable intensity of interglacial periods in ice core records. Temperature was estimated after correction for sea-water isotopic composition (Bintanja et al, 2005) and for ice sheet elevation (Parrenin et al, 2007) on EDC3 age scale (Parrenin et al, 2007).
Resumo:
Two silicate-rich dust layers were found in the Dome Fuji ice core in East Antarctica, at Marine Isotope Stages 12 and 13. Morphologies, textures, and chemical compositions of constituent particles reveal that they are high-temperature melting products and are of extraterrestrial origin. Because similar layers were found ~2000 km east of Dome Fuji, at EPICA (European Project for Ice Coring in Antarctica)-Dome C, particles must have rained down over a wide area 434 and 481 ka. The strewn fields occurred over an area of at least 3 × 10**6 km**2. Chemical compositions of constituent phases and oxygen isotopic composition of olivines suggest that the upper dust layer was produced by a high-temperature interaction between silicate-rich melt and water vapor due to an impact explosion or an aerial burst of a chondritic meteoroid on the inland East Antarctic ice sheet. An estimated total mass of the impactor, on the basis of particle flux and distribution area, is at least 3 × 10**9 kg. A possible parent material of the lower dust layer is a fragment of friable primitive asteroid or comet. A hypervelocity impact of asteroidal/cometary material on the upper atmosphere and an explosion might have produced aggregates of sub-µm to µm-sized spherules. Total mass of the parent material of the lower layer must exceed 1 × 10**9 kg. The two extraterrestrial horizons, each a few millimeters in thickness, represent regional or global meteoritic events not identified previously in the Southern Hemisphere.
Resumo:
A high-resolution record of the atmospheric CO2 concentration from 60 to 20 thousand years before present (kyr BP) based on measurements on the ice core of Taylor Dome, Antarctica is presented. This record shows four distinct peaks of 20 parts per million by volume (ppmv) on a millennial time scale. Good correlation of the CO2 record with temperature reconstructions based on stable isotope measurements on the Vostok ice core (Antarctica) is found.
Resumo:
In this study we report on new non-sea salt calcium (nssCa2+, mineral dust proxy) and sea salt sodium (ssNa+, sea ice proxy) records along the East Antarctic Talos Dome deep ice core in centennial resolution reaching back 150 thousand years (ka) before present. During glacial conditions nssCa2+ fluxes in Talos Dome are strongly related to temperature as has been observed before in other deep Antarctic ice core records, and has been associated with synchronous changes in the main source region (southern South America) during climate variations in the last glacial. However, during warmer climate conditions Talos Dome mineral dust input is clearly elevated compared to other records mainly due to the contribution of additional local dust sources in the Ross Sea area. Based on a simple transport model, we compare nssCa2+ fluxes of different East Antarctic ice cores. From this multi-site comparison we conclude that changes in transport efficiency or atmospheric lifetime of dust particles do have a minor effect compared to source strength changes on the large-scale concentration changes observed in Antarctic ice cores during climate variations of the past 150 ka. Our transport model applied on ice core data is further validated by climate model data. The availability of multiple East Antarctic nssCa2+ records also allows for a revision of a former estimate on the atmospheric CO2 sensitivity to reduced dust induced iron fertilisation in the Southern Ocean during the transition from the Last Glacial Maximum to the Holocene (T1). While a former estimate based on the EPICA Dome C (EDC) record only suggested 20 ppm, we find that reduced dust induced iron fertilisation in the Southern Ocean may be responsible for up to 40 ppm of the total atmospheric CO2 increase during T1. During the last interglacial, ssNa+ levels of EDC and EPICA Dronning Maud Land (EDML) are only half of the Holocene levels, in line with higher temperatures during that period, indicating much reduced sea ice extent in the Atlantic as well as the Indian Ocean sector of the Southern Ocean. In contrast, Holocene ssNa+ flux in Talos Dome is about the same as during the last interglacial, indicating that there was similar ice cover present in the Ross Sea area during MIS 5.5 as during the Holocene.
Resumo:
Sea ice and dust flux increased greatly in the Southern Ocean during the last glacial period. Palaeorecords provide contradictory evidence about marine productivity in this region, but beyond one glacial cycle, data were sparse. Here we present continuous chemical proxy data spanning the last eight glacial cycles (740,000 years) from the Dome C Antarctic ice core. These data constrain winter sea-ice extent in the Indian Ocean, Southern Ocean biogenic productivity and Patagonian climatic conditions. We found that maximum sea-ice extent is closely tied to Antarctic temperature on multi-millennial timescales, but less so on shorter timescales. Biological dimethylsulphide emissions south of the polar front seem to have changed little with climate, suggesting that sulphur compounds were not active in climate regulation. We observe large glacial-interglacial contrasts in iron deposition, which we infer reflects strongly changing Patagonian conditions. During glacial terminations, changes in Patagonia apparently preceded sea-ice reduction, indicating that multiple mechanisms may be responsible for different phases of CO2 increase during glacial terminations. We observe no changes in internal climatic feedbacks that could have caused the change in amplitude of Antarctic temperature variations observed 440,000 years ago.
Resumo:
A record of atmospheric carbon dioxide (CO2) concentrations measured on the EPICA (European Project for Ice Coring in Antarctica) Dome Concordia ice core extends the Vostok CO2 record back to 650,000 years before the present (yr B.P.). Before 430,000 yr B.P., partial pressure of atmospheric CO2 lies within the range of 260 and 180 parts per million by volume. This range is almost 30% smaller than that of the last four glacial cycles; however, the apparent sensitivity between deuterium and CO2 remains stable throughout the six glacial cycles, suggesting that the relationship between CO2 and Antarctic climate remained rather constant over this interval.
Resumo:
The Antarctic Vostok ice core provided compelling evidence of the nature of climate, and of climate feedbacks, over the past 420,000 years. Marine records suggest that the amplitude of climate variability was smaller before that time, but such records are often poorly resolved. Moreover, it is not possible to infer the abundance of greenhouse gases in the atmosphere from marine records. Here we report the recovery of a deep ice core from Dome C, Antarctica, that provides a climate record for the past 740,000 years. For the four most recent glacial cycles, the data agree well with the record from Vostok. The earlier period, between 740,000 and 430,000 years ago, was characterized by less pronounced warmth in interglacial periods in Antarctica, but a higher proportion of each cycle was spent in the warm mode. The transition from glacial to interglacial conditions about 430,000 years ago (Termination V) resembles the transition into the present interglacial period in terms of the magnitude of change in temperatures and greenhouse gases, but there are significant differences in the patterns of change. The interglacial stage following Termination V was exceptionally long - 28,000 years compared to, for example, the 12,000 years recorded so far in the present interglacial period. Given the similarities between this earlier warm period and today, our results may imply that without human intervention, a climate similar to the present one would extend well into the future.
Resumo:
Understanding the role of atmospheric CO2 during past climate changes requires clear knowledge of how it varies in time relative to temperature. Antarctic ice cores preserve highly resolved records of atmospheric CO2 and Antarctic temperature for the past 800,000 years. Here we propose a revised relative age scale for the concentration of atmospheric CO2 and Antarctic temperature for the last deglacial warming, using data from five Antarctic ice cores. We infer the phasing between CO2 concentration and Antarctic temperature at four times when their trends change abruptly. We find no significant asynchrony between them, indicating that Antarctic temperature did not begin to rise hundreds of years before the concentration of atmospheric CO2, as has been suggested by earlier studies.