980 resultados para Single Coal Particle
Resumo:
The movement of molecules inside living cells is a fundamental feature of biological processes. The ability to both observe and analyse the details of molecular diffusion in vivo at the single-molecule and single-cell level can add significant insight into understanding molecular architectures of diffus- ing molecules and the nanoscale environment in which the molecules diffuse. The tool of choice for monitoring dynamic molecular localization in live cells is fluorescence microscopy, especially so combining total internal reflection fluorescence with the use of fluorescent protein (FP) reporters in offering exceptional imaging contrast for dynamic processes in the cell mem- brane under relatively physiological conditions compared with competing single-molecule techniques. There exist several different complex modes of diffusion, and discriminating these from each other is challenging at the mol- ecular level owing to underlying stochastic behaviour. Analysis is traditionally performed using mean square displacements of tracked particles; however, this generally requires more data points than is typical for single FP tracks owing to photophysical instability. Presented here is a novel approach allowing robust Bayesian ranking of diffusion processes to dis-criminate multiple complex modes probabilistically. It is a computational approach that biologists can use to understand single-molecule features in live cells.
Resumo:
Chinese modal particles feature prominently in Chinese people’s daily use of the language, but their pragmatic and semantic functions are elusive as commonly recognised by Chinese linguists and teachers of Chinese as a foreign language. This book originates from an extensive and intensive empirical study of the Chinese modal particle a (啊), one of the most frequently used modal particles in Mandarin Chinese. In order to capture all the uses and the underlying meanings of the particle, the author transcribed the first 20 episodes, about 20 hours in length, of the popular Chinese TV drama series Kewang ‘Expectations’, which yielded a corpus data of more than 142’000 Chinese characters with a total of 1829 instances of the particle all used in meaningful communicative situations. Within its context of use, every single occurrence of the particle was analysed in terms of its pragmatic and semantic contributions to the hosting utterance. Upon this basis the core meanings were identified which were seen as constituting the modal nature of the particle.
Resumo:
Contrast-matching ultrasmall-angle neutron scattering (USANS) and small-angle neutron scattering (SANS) techniques were used for the first time to determine both the total pore volume and the fraction of the pore volume that is inaccessible to deuterated methane, CD4, in four bituminous coals in the range of pore sizes between ∼10 Å and ∼5 μm. Two samples originated from the Illinois Basin in the U.S.A., and the other two samples were commercial Australian bituminous coals from the Bowen Basin. The total and inaccessible porosity were determined in each coal using both Porod invariant and the polydisperse spherical particle (PDSP) model analysis of the scattering data acquired from coals both in vacuum and at the pressure of CD4, at which the scattering length density of the pore-saturating fluid is equal to that of the solid coal matrix (zero average contrast pressure). The total porosity of the coals studied ranged from 7 to 13%, and the volume of pores inaccessible to CD4 varied from ∼13 to ∼36% of the total pore volume. The volume fraction of inaccessible pores shows no correlation with the maceral composition; however, it increases with a decreasing total pore volume. In situ measurements of the structure of one coal saturated with CO2 and CD4 were conducted as a function of the pressure in the range of 1−400 bar. The neutron scattering intensity from small pores with radii less than 35 Å in this coal increased sharply immediately after the fluid injection for both gases, which demonstrates strong condensation and densification of the invading subcritical CO2 and supercritical methane in small pores.
Resumo:
Small-angle neutron scattering (SANS) and ultra-small-angle neutron scattering (USANS) measurements of the structure of two Australian bituminous coals (particle size of 1-0.5 mm) before, during, and after exposure to 155 bar of helium were made to identify any effects of pressure alone on the pore size distribution of coal and any irreversible effects upon exposure to high pressures of helium in the pore size range from 3 nm to 10 μm. No irreversible effects upon exposure were identified for any pore size. No effects of pressure on pore size distribution were observed, except for a small effect at a pore size of about 2 μm for one coal. This study provides a convenient baseline for SANS and USANS investigations on sorption of gases at elevated pressures on coals, by distinguishing between the effect of pressure alone on coal pore size distribution and against the effect of the gas to be investigated.
Resumo:
This paper presents a numerical model for understanding particle transport and deposition in metal foam heat exchangers. Two-dimensional steady and unsteady numerical simulations of a standard single row metal foam-wrapped tube bundle are performed for different particle size distributions, i.e. uniform and normal distributions. Effects of different particle sizes and fluid inlet velocities on the overall particle transport inside and outside the foam layer are also investigated. It was noted that the simplification made in the previously-published numerical works in the literature, e.g. uniform particle deposition in the foam, is not necessarily accurate at least for the cases considered here. The results highlight the preferential particle deposition areas both along the tube walls and inside the foam using a developed particle deposition likelihood matrix. This likelihood matrix is developed based on three criteria being particle local velocity, time spent in the foam, and volume fraction. It was noted that the particles tend to deposit near both front and rear stagnation points. The former is explained by the higher momentum and direct exposure of the particles to the foam while the latter only accommodate small particles which can be entrained in the recirculation region formed behind the foam-wrapped tubes.
Resumo:
Red blood cells (RBCs) are the most common type of cells in human blood and they exhibit different types of motions and deformed shapes in capillary flows. The behaviour of the RBCs should be studied in order to explain the RBC motion and deformation mechanism. This article presents a numerical simulation method for RBC deformation in microvessels. A two dimensional spring network model is used to represent the RBC membrane, where the elastic stretch/compression energy and the bending energy are considered with the constraint of constant RBC surface area. The forces acting on the RBC membrane are obtained from the principle of virtual work. The whole fluid domain is discretized into a finite number of particles using smoothed particle hydrodynamics concepts and the motions of all the particles are solved using Navier--Stokes equations. Minimum energy concepts are used to simulate the deformed shape of the RBC model. To verify the model, the motion of a single RBC is simulated in a Poiseuille flow and the characteristic parachute shape of the RBC is observed. Further simulations reveal that the RBC shows a tank treading motion when it flows in a linear shear flow.
Numerical investigation of motion and deformation of a single red blood cell in a stenosed capillary
Resumo:
It is generally assumed that influence of the red blood cells (RBCs) is predominant in blood rheology. The healthy RBCs are highly deformable and can thus easily squeeze through the smallest capillaries having internal diameter less than their characteristic size. On the other hand, RBCs infected by malaria or other diseases are stiffer and so less deformable. Thus it is harder for them to flow through the smallest capillaries. Therefore, it is very important to critically and realistically investigate the mechanical behavior of both healthy and infected RBCs which is a current gap in knowledge. The motion and the steady state deformed shape of the RBCs depend on many factors, such as the geometrical parameters of the capillary through which blood flows, the membrane bending stiffness and the mean velocity of the blood flow. In this study, motion and deformation of a single two-dimensional RBC in a stenosed capillary is explored by using smoothed particle hydrodynamics (SPH) method. An elastic spring network is used to model the RBC membrane, while the RBC's inside fluid and outside fluid are treated as SPH particles. The effect of RBC's membrane stiffness (kb), inlet pressure (P) and geometrical parameters of the capillary on the motion and deformation of the RBC is studied. The deformation index, RBC's mean velocity and the cell membrane energy are analyzed when the cell passes through the stenosed capillary. The simulation results demonstrate that the kb, P and the geometrical parameters of the capillary have a significant impact on the RBCs' motion and deformation in the stenosed section.
Size-resolved particle distribution and gaseous concentrations by real-world road tunnel measurement
Resumo:
Measurements of aerosol particle number size distributions (15-700 nm), CO and NOx were performed in a bus tunnel, Australia. Daily mean particle size distributions of mixed diesel/CNG (Compressed Natural Gas) buses traffic flow were determined in 4 consecutive measurement days. EFs (Emission Factors) of Particle size distribution of diesel buses and CNG buses were obtained by MLR (Multiple Linear Regression) methods, particle distributions of diesel buses and CNG buses were observed as single accumulation mode and nuclei-mode separately. Particle size distributions of mixed traffic flow were decomposed by two log-normal fitting curves for each 30 minutes interval mean scans, all the mix fleet PSD emission can be well fitted by the summation of two log-normal distribution curves, and these were composed of nuclei mode curve and accumulation curve, which were affirmed as the CNG buses and diesel buses PN emission curves respectively. Finally, particle size distributions of diesel buses and CNG buses were quantified by statistical whisker-box charts. For log-normal particle size distribution of diesel buses, accumulation mode diameters were 74.5~87.5nm, geometric standard deviations were 1.89~1.98. As to log-normal particle size distribution of CNG buses, nuclei-mode diameters were 21~24 nm, geometric standard deviations were 1.27~1.31.
Resumo:
On the basis of the growing interest on the impact of airborne particles on human exposure as well as the strong debate in Western countries on the emissions of waste incinerators, this work reviewed existing literature to: (i) show the emission factors of ultrafine particles (particles with a diameter less than 100 nm) of waste incinerators, and; (ii) assess the contribution of waste incinerators in terms of ultrafine particles to exposure and dose of people living in the surrounding areas of the plants in order to estimate eventual risks. The review identified only a limited number of studies measuring ultrafine particle emissions, and in general they report low particle number concentrations at the stack (the median value was equal to 5.5×103 part cm-3), in most cases higher than the outdoor background value. The lowest emissions were achieved by utilization of the bag-house filter which has an overall number-based filtration efficiency higher than 99%. Referring to reference case, the corresponding emission factor is equal to 9.1×1012 part min-1, that is lower than one single high-duty vehicle. Since the higher particle number concentrations found in the most contributing microenvironments to the exposure (indoor home, transportation, urban outdoor), the contribution of the waste incinerators to the daily dose can be considered as negligible.
Resumo:
One of the major problems faced by coal based thermal power stations is handling and disposal of ash. Among the various uses of fly ash, the major quantity of ash produced is used in geotechnical engineering applications such as construction of embankments, as a backfill material, etc. The generally low specific gravity of fly ash resulting in low unit weight as compared to soils is an attractive property for its use in geotechnical applications. In general, specific gravity of coal ash lies around 2.0 but can vary to a large extent (1.6 to 3.1). The variation of specific gravity of coal ash is due to the combination of various factors like gradation, particle shape, and chemical composition. Since specific gravity is an important physical property, it has been studied in depth for three Indian coal ashes and reported in this paper.
Resumo:
The Coal Seam Gas (CSG) industry in Australia has grown significantly in recent years. During the gas extraction process, water is also recovered which is brackish in character. In order to facilitate beneficial reuse of the water, the CSG industry has primarily invested in Reverse Osmosis (RO) as the primary method for associated water desalination. However, the presence of alkaline earth ions in the water combined with the inherent alkalinity of the water may result in RO membrane scaling. Consequently, weak acid cation (WAC) synthetic ion exchange resins were investigated as a potential solution to this potential problem. It was shown that resins were indeed highly efficient at treating single and multi-component solutions of alkaline earth ions. The interaction of the ions with the resin was found to be considerably more complex that previously reported.
Resumo:
Rail track undergoes complex loading patterns under moving traffic conditions compared to roads due to its continued and discontinued multi-layered structure, including rail, sleepers, ballast layer, sub-ballast layer, and subgrade. Particle size distributions (PSDs) of ballast, subballast, and subgrade layers can be critical in cyclic plastic deformation of rail track under moving traffic on frequent track degradation of rail tracks, especially at bridge transition zones. Conventional test approaches: static shear and cyclic single-point load tests are however unable to replicate actual loading patterns of moving train. Multi-ring shear apparatus; a new type of torsional simple shear apparatus, which can reproduce moving traffic conditions, was used in this study to investigate influence of particle size distribution of rail track layers on cyclic plastic deformation. Three particle size distributions, using glass beads were examined under different loading patterns: cyclic sin-gle-point load, and cyclic moving wheel load to evaluate cyclic plastic deformation of rail track under different loading methods. The results of these tests suggest that particle size distributions of rail track structural layers have significant impacts on cyclic plastic deformation under moving train load. Further, the limitations in con-ventional test methods used in laboratories to estimate the plastic deformation of rail track materials lead to underestimate the plastic deformation of rail tracks.
Resumo:
Al-Si-graphite particle composite alloy pistons containing different percentages of about 80 μm uncoated graphite particles were successfully cast by foundry techniques. Tests with a 5 hp single-cylinder diesel engine show that Al-Si-graphite particle composite pistons can withstand an endurance test of 500 h without any apparent deterioration and do not seize during the running-in period. The use of the Al-Si-3% graphite particle composite piston also results in (a) up to 3% reduction in the specific fuel consumption, (b) considerable reduction in the wear of all four piston rings, (c) a reduction in piston wear, (d) a 9% reduction in the frictional horsepower losses of the engine as determined by the motoring test and (e) a slight increase in the exhaust gas temperature. These reductions (a)–(d) appear to be due to increased lubrication from the graphite particles which are smeared on the bearing surface, the higher damping capacity of the composite pistons and the reduced coefficient of thermal expansion of the composite pistons. Preliminary results indicate that aluminum-graphite particle composite alloy is a promising material for automotive pistons.
Resumo:
In this paper, we examine approaches to estimate a Bayesian mixture model at both single and multiple time points for a sample of actual and simulated aerosol particle size distribution (PSD) data. For estimation of a mixture model at a single time point, we use Reversible Jump Markov Chain Monte Carlo (RJMCMC) to estimate mixture model parameters including the number of components which is assumed to be unknown. We compare the results of this approach to a commonly used estimation method in the aerosol physics literature. As PSD data is often measured over time, often at small time intervals, we also examine the use of an informative prior for estimation of the mixture parameters which takes into account the correlated nature of the parameters. The Bayesian mixture model offers a promising approach, providing advantages both in estimation and inference.
Resumo:
Coal seam gas production has resulted in the production of large volumes of associated water which contains dissolved salts dominated by sodium chloride and sodium bicarbonate. Ion exchange using synthetic resins has been proposed as a method for desalination of coal seam water to make it suitable for various beneficial reuse options. This study investigated the behaviour of solutions of sodium chloride and sodium bicarbonate with respect to exchange with Lanxess S108H strong acid cation (SAC) resin. Equilibrium isotherms were created for solutions of NaCl and NaHCO3 and an actual sample of coal seam water from the Surat Basin in southern Queensland. The exchange of sodium ions arising from sodium bicarbonate was found to be considerably more favourable than exchange of sodium ions from sodium chloride solutions. This latter behaviour was attributed to the secondary decomposition of bicarbonate species under acidic conditions which resulted in the evolution of carbon dioxide and formation of water. The isotherm profiles could not be satisfactorily fitted by a single isotherm model such as the Langmuir expression. Instead, two Langmuir equations had to be simultaneously applied in order to fit the sections of the isotherm attributable to sodium ion exchange from sodium bicarbonate and sodium chloride. The shape of the isotherm profile was dependent upon the ratio of sodium chloride to sodium bicarbonate in solution and there was a high degree of correlation between simulated and actual coal seam water solutions.