901 resultados para Simulation of a Detector
Resumo:
The moisture content in concrete structures has an important influence in their behavior and performance. Several vali-dated numerical approaches adopt the governing equation for relative humidity fields proposed in Model Code 1990/2010. Nevertheless there is no integrative study which addresses the choice of parameters for the simulation of the humidity diffusion phenomenon, particularly in concern to the range of parameters forwarded by Model Code 1990/2010. A software based on a Finite Difference Method Algorithm (1D and axisymmetric cases) is used to perform sensitivity analyses on the main parameters in a normal strength concrete. Then, based on the conclusions of the sensi-tivity analyses, experimental results from nine different concrete compositions are analyzed. The software is used to identify the main material parameters that better fit the experimental data. In general, the model was able to satisfactory fit the experimental results and new correlations were proposed, particularly focusing on the boundary transfer coeffi-cient.
Resumo:
This paper presents the numerical simulations of the punching behaviour of centrally loaded steel fibre reinforced self-compacting concrete (SFRSCC) flat slabs. Eight half scaled slabs reinforced with different content of hooked-end steel fibres (0, 60, 75 and 90 kg/m3) and concrete strengths of 50 and 70 MPa were tested and numerically modelled. Moreover, a total of 54 three-point bending tests were carried out to assess the post-cracking flexural tensile strength. All the slabs had a relatively high conventional flexural reinforcement in order to promote the occurrence of punching failure mode. Neither of the slabs had any type of specific shear reinforcement rather than the contribution of the steel fibres. The numerical simulations were performed according to the Reissner-Mindlin theory under the finite element method framework. Regarding the classic formulation of the Reissner-Mindlin theory, in order to simulate the progressive damage induced by cracking, the shell element is discretized into layers, being assumed a plane stress state in each layer. The numerical results are, then, compared with the experimental ones and it is possible to notice that they accurately predict the experimental force-deflection relationship. The type of failure observed experimentally was also predicted in the numerical simulations.
Resumo:
The present paper focuses on a damage identification method based on the use of the second order spectral properties of the nodal response processes. The explicit dependence on the frequency content of the outputs power spectral densities makes them suitable for damage detection and localization. The well-known case study of the Z24 Bridge in Switzerland is chosen to apply and further investigate this technique with the aim of validating its reliability. Numerical simulations of the dynamic response of the structure subjected to different types of excitation are carried out to assess the variability of the spectrum-driven method with respect to both type and position of the excitation sources. The simulated data obtained from random vibrations, impulse, ramp and shaking forces, allowed to build the power spectrum matrix from which the main eigenparameters of reference and damage scenarios are extracted. Afterwards, complex eigenvectors and real eigenvalues are properly weighed and combined and a damage index based on the difference between spectral modes is computed to pinpoint the damage. Finally, a group of vibration-based damage identification methods are selected from the literature to compare the results obtained and to evaluate the performance of the spectral index.
Resumo:
This paper deals with a computing simulation for an offshore wind energy system taking into account the influence of the marine waves action throughout the floating platform. The wind energy system has a variable-speed turbine equipped with a permanent magnet synchronous generator and a full-power five level converter, injecting energy into the electric grid through a high voltage alternate current link. A reduction on the unbalance of the voltage in the DC-link capacitors of the five-level converter is proposed by a strategic selection of the output voltage vectors. The model for the drive train of the wind energy system is a two mass model, including the dynamics of the floating platform. A case study is presented and the assessment of the quality of the energy injected into the electric grid is discussed.
Resumo:
A new integrated mathematical model for the simulation of an offshore wind system having a rectifier input voltage malfunction at one phase is presented in this paper. The mathematical model considers an offshore variable-speed wind turbine on a floating platform, equipped with a permanent magnet synchronous generator using full-power three-level converter to inject energy into the electric network, through a high voltage direct current transmission submarine cable. The model for the drive train is a discrete three mass, incorporating the dynamic of the moving surface. A case study is presented to access conclusion about the malfunction.
Resumo:
Dissertação de mestrado integrado em Mechanical Engineering
Resumo:
Dissertação de mestrado integrado em Civil Engineering
Resumo:
This work presents a molecular-scale agent-based model for the simulation of enzymatic reactions at experimentally measured concentrations. The model incorporates stochasticity and spatial dependence, using diffusing and reacting particles with physical dimensions. We developed strategies to adjust and validate the enzymatic rates and diffusion coefficients to the information required by the computational agents, i.e., collision efficiency, interaction logic between agents, the time scale associated with interactions (e.g., kinetics), and agent velocity. Also, we tested the impact of molecular location (a source of biological noise) in the speed at which the reactions take place. Simulations were conducted for experimental data on the 2-hydroxymuconate tautomerase (EC 5.3.2.6, UniProt ID Q01468) and the Steroid Delta-isomerase (EC 5.3.3.1, UniProt ID P07445). Obtained results demonstrate that our approach is in accordance to existing experimental data and long-term biophysical and biochemical assumptions.
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2012
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2012
Resumo:
Modular modelling, dynamics simulation, multibodies, O(N) method, closed loops, post-stabilization
Resumo:
Limestone, calcination, normal shaft kiln, process simulation, temperature profiles
Resumo:
Fluidized beds, granulation, heat and mass transfer, calcium dynamics, stochastic process, finite element methods, Rosenbrock methods, multigrid methods, parallelization
Resumo:
Moving grate, LEPOL, Particle, Limestone, Decomposition, Clinker, Fluidisation
Resumo:
This work focuses on the modeling and numerical approximations of population balance equations (PBEs) for the simulation of different phenomena occurring in process engineering. The population balance equation (PBE) is considered to be a statement of continuity. It tracks the change in particle size distribution as particles are born, die, grow or leave a given control volume. In the population balance models the one independent variable represents the time, the other(s) are property coordinate(s), e.g., the particle volume (size) in the present case. They typically describe the temporal evolution of the number density functions and have been used to model various processes such as granulation, crystallization, polymerization, emulsion and cell dynamics. The semi-discrete high resolution schemes are proposed for solving PBEs modeling one and two-dimensional batch crystallization models. The schemes are discrete in property coordinates but continuous in time. The resulting ordinary differential equations can be solved by any standard ODE solver. To improve the numerical accuracy of the schemes a moving mesh technique is introduced in both one and two-dimensional cases ...