771 resultados para Silica Nanoparticles
Resumo:
We present the magnetic separation approach to facilitate the recovery of gold nanoparticle (AuNP) catalysts. The use of magnetically recoverable supports for the immobilization of AuNPs instead of traditional oxides, polymers or carbon based solids guarantees facile, clean, fast and efficient separation of the catalyst at the end of the reaction cycle. Magnetic separation can be considered an environmentally benign separation approach, since it minimizes the use of auxiliary substances and energy for achieving catalyst recovery. The catalyst preparation is based on the immobilization of Au(3+) on the surface of core-shell silica-coated magnetite nanoparticles, followed by metal reduction using two different methods. AuNPs were prepared by thermal reduction in air and by hydrogen reduction at mild temperature. Interestingly, the mean particle size of the supported AuNPs was similar (ca. 5.9 nm), but the polydispersity of the samples is quite different. The catalytic activity of both catalysts in the aerobic oxidation of alcohols was investigated and a distinct selectivity for benzyl alcohol oxidation was observed.
Resumo:
In this work we report the preparation of a new blue-emitting material based on the templated synthesis of mesoporous silica (MCM-41) using micellar solutions of the newly synthesized monocationic metallosurfactant complex bis[1-benzyl-4-(2,4-difluorophenyl)-1H-1,2,3-triazole](4,4'-diheptadecyl-2,2'- bipyridine)-iridium(III) chloride in hexadecyl-trimethyl-ammonium bromide (CTAB). Under ambient conditions, significant increases in excited state lifetime and quantum yield values (up to 45%), were obtained for the solid materials in comparison to the corresponding micellar solutions. Solid state (1)H and (19)F NMR spectroscopies were successfully employed for quantifying the luminophore content in terms of Ir-surfactant to CTAB and Ir-surfactant to silica ratios.
Resumo:
The entrapment of hematoporphyrin IX (Hp IX) in silica by means of a microemulsion resulted in silica spheres of 33 +/- 6 nm. The small size, narrow size distribution and lack of aggregation maintain Hp IX silica nanospheres stable in aqueous solutions for long periods and permit a detailed study of the entrapped drug by different techniques. Hp IX entrapped in the silica matrix is accessed by oxygen and upon irradiation generates singlet oxygen which diffuses very efficiently to the outside solution. The Hp IX entrapped in the silica matrix is also reached by iron(II) ions, which causes quenching of the porphyrin fluorescence emission. The silica matrix also provides extra protection to the photosensitizer against interaction with BSA and ascorbic acid, which are known to cause suppression of singlet oxygen generation by the Hp IX free in solution. Therefore, the incorporation of Hp IX molecules into silica nanospheres increased the potential of the photosensitizer to perform photodynamic therapy.
Resumo:
Inorganic metal oxide materials are generally poor proton conductors as conductivities are lower than 10-5-10-6 S.cm-1. However, by functionalising Silica, Zirconia or Titania, proton conduction increases by up to 5 orders of magnitude. Hence, functionalised nanomaterials are becoming very competitive against conventional electrolyte materials such as Nafion. In this work, sol-gel processes are employed to produce silica phosphate, zirconia phosphate and titania phosphate functionalised nanoparticles. Furthermore, conductivities at hydrate conditions are investigated, and nanoparticle formation and functionalisation effects on proton conductivity are discussed. Results show conductivities up to 10-1 S.cm-1 (95% RH). Proton conduction increases with the functionalisation content, however heat treatment of nanoparticles locks the functionality in the crystal phase, thus inhibiting proton conduction. Controlling the mesopore phase allows for high proton conduction at hydrated conditions, clearly indicating facilitated ion transport through the pore channels.
Resumo:
In this paper we present some result on sol-gel derived silica-hafnia systems. In particular we focus on fabrication, morphological and spectroscopic assessment of Er(3+)-activated thin films. Two examples of silica-hafnia-derived waveguiding glass ceramics, prepared by top-down and bottom-up techniques are reported, and the main optical properties are discussed. Finally, some properties of activated microspherical resonators, having a silica core, obtained by melting the end of a telecom fiber, coated with an Er(3+)-doped 70SiO(2)-30HfO(2) film, are presented. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Nanocomposite materials with an organic-inorganic urea-silicate (di-ureasil) based matrix containing gold nanoparticles (NPs) were synthesized and characterized by optical (UV/Vis) spectroscopy and indentation measurement. The urea silicate gels were obtained by reaction between silicon alkoxyde modified by isocyanate group and polyethylene glycol oligomer with amine terminal groups in presence of catalyst. The latter ensures the successful incorporation of citrate-stabilized gold NPs in the matrix. It is shown that using a convenient destabilizing agent (AgNO3) and governing the preparative conditions, the aggregation degree of gold NPs can be controlled. The developed synthesis procedure significantly simplifies the preparative procedure of gold/urea silicate nanocomposites, compared to the procedure using gold NPs, preliminary covered with silica shells. Mechanical properties of the prepared sample were characterised using depth sensing indentation methods (DSI) and an idea about the type of aggregation structures was suggested.
Resumo:
A route of accumulation and elimination of therapeutic engineered nanoparticles (NPs) may be the kidney. Therefore, the interactions of different solid-core inorganic NPs (titanium-, silica-, and iron oxide-based NPs) were studied in vitro with the MDCK and LLC-PK epithelial cells as representative cells of the renal epithelia. Following cell exposure to the NPs, observations include cytotoxicity for oleic acid-coated iron oxide NPs, the production of reactive oxygen species for titanium dioxide NPs, and cell depletion of thiols for uncoated iron oxide NPs, whereas for silica NPs an apparent rapid and short-lived increase of thiol levels in both cell lines was observed. Following cell exposure to metallic NPs, the expression of the tranferrin receptor/CD71 was decreased in both cells by iron oxide NPs, but only in MDCK cells by titanium dioxide NPs. The tight association, then subsequent release of NPs by MDCK and LLC-PK kidney epithelial cells, showed that following exposure to the NPs, only MDCK cells could release iron oxide NPs, whereas both cells released titanium dioxide NPs. No transfer of any solid-core NPs across the cell layers was observed.
Resumo:
Tin-oxide nanoparticles with controlled narrow size distributions are synthesized while physically encapsulated inside silica mesoporous templates. By means of ultraviolet-visible spectroscopy, a redshift of the optical absorbance edge is observed. Photoluminescence measurements corroborate the existence of an optical transition at 3.2 eV. The associated band of states in the semiconductor gap is present even on template-synthesized nanopowders calcined at 800°C, which contrasts with the evolution of the gap states measured on materials obtained by other methods. The gap states are thus considered to be surface localized, disappearing with surface faceting or being hidden by the surface-to-bulk ratio decrease.
Resumo:
Different types of NPs (nanoparticles) are currently under development for diagnostic and therapeutic applications in the biomedical field, yet our knowledge about their possible effects and fate in living cells is still limited. In the present study, we examined the cellular response of human brain-derived endothelial cells to NPs of different size and structure: uncoated and oleic acid-coated iron oxide NPs (8-9 nm core), fluorescent 25 and 50 nm silica NPs, TiO2 NPs (21 nm mean core diameter) and PLGA [poly(lactic-co-glycolic acid)]-PEO [poly(ethylene oxide)] polymeric NPs (150 nm). We evaluated their uptake by the cells, and their localization, generation of oxidative stress and DNA-damaging effects in exposed cells. We show that NPs are internalized by human brain-derived endothelial cells; however, the extent of their intracellular uptake is dependent on the characteristics of the NPs. After their uptake by human brain-derived endothelial cells NPs are transported into the lysosomes of these cells, where they enhance the activation of lysosomal proteases. In brain-derived endothelial cells, NPs induce the production of an oxidative stress after exposure to iron oxide and TiO2 NPs, which is correlated with an increase in DNA strand breaks and defensive mechanisms that ultimately induce an autophagy process in the cells.
Resumo:
Monodispersed colloidal crystals based on silica sub-micrometric particles were synthesized using the Stöber-Fink-Bohn process. The control of nucleation and coalescence result in improved characteristics such as high sphericity and very low size dispersion. The resulting silica particles show characteristics suitable for self-assembling across large areas of closely-packed 2D crystal monolayers by an accurate Langmuir-Blodgett deposition process on glass, fused silica and silicon substrates. Due to their special optical properties, colloidal films have potential applications in fields including photonics, electronics, electro-optics, medicine (detectors and sensors), membrane filters and surface devices. The deposited monolayers of silica particles were characterized by means of FESEM, AFM and optical transmittance measurements in order to analyze their specific properties and characteristics. We propose a theoretical calculation for the photonic band gaps in 2D systems using an extrapolation of the photonic behavior of the crystal from 3D to 2D. In this work we show that the methodology used and the conditions in self-assembly processes are decisive for producing high-quality two-dimensional colloidal crystals by the Langmuir-Blodgett technique.
Resumo:
A simple and most promising oxide-assisted catalyst-free method is used to prepare silicon nitride nanowires that give rise to high yield in a short time. After a brief analysis of the state of the art, we reveal the crucial role played by the oxygen partial pressure: when oxygen partial pressure is slightly below the threshold of passive oxidation, a high yield inhibiting the formation of any silica layer covering the nanowires occurs and thanks to the synthesis temperature one can control nanowire dimensions
Resumo:
Nanoparticles (NPs) have gained a lot of interest in recent years due to their huge potential for applications in industry and medicine. Their unique properties offer a large number of attractive possibilities in the biomedical field, providing innovative tools for diagnosis of diseases and for novel therapies. Nevertheless, a deep understanding of their interactions with living tissues and the knowledge about their possible effects in the human body are necessary for the safe use of nanoparticulate formulations. The aim of this PhD project was to study in detail the interactions of therapeutic NPs with living cells, including cellular uptake and release, cellular localization and transport across the cell layers. Moreover, the effects of NPs on the cellular metabolic processes were determined using adapted in vitro assays. We evaluated the biological effect of several NPs potentially used in the biomedical field, including titanium dioxide (Ti02) NPs, 2-sized fluorescent silica NPs, ultrasmall superparamagnetic iron oxide (USPIO) NPs, either uncoated or coated with oleic acid or with polyvinylamine (aminoPVA) and poly(lactic-co-glycolic acid) - polyethylene-oxide (PLGA-PEO) NPs. We have found that the NPs were internalized by the cells, depending on their size, chemical composition, surface coating and also depending on the cell line considered. The uptake of aminoPVA-coated USPIO NPs by endothelial cells was enhanced in the presence of an external magnetic field. None of the tested USPIO NPs and silica NPs was transported across confluent kidney cell layers or brain endothelial cell layers, even in the presence of a magnetic field. However, in an original endothelium-glioblastoma barrier model which was developed, uncoated USPIO NPs were directly transferred from endothelial cells to glioblastoma cells. Following uptake, Ti02 NPs and uncoated USPIO NPs were released by the kidney cells, but not by the endothelial cells. Furthermore, these NPs induced an oxidative stress and autophagy in brain endothelial cells, possibly associated with their enhanced agglomeration in cell medium. A significant DNA damage was found in brain endothelial cells after their exposure to TiO2NPs. Altogether these results extend the existing knowledge about the effects of NPs on living cells with regard to their physicochemical characteristics and provide interesting tools for further investigation. The development of the in vitro toxicological assays with a special consideration for risk evaluation aims to reduce the use of animal experiments. -Les nanoparticules (NPs) présentent beaucoup d'intérêt dans le domaine biomédical et industriel. Leurs propriétés uniques offrent un grand nombre de possibilités de solutions innovantes pour le diagnostique et la thérapie. Cependant, pour un usage sûr des NPs il est nécessaire d'acquérir une connaissance approfondie des mécanismes d'interactions des NPs avec les tissus vivants et de leur effets sur le corps humain. Le but de ce projet de thèse était d'étudier en détail les mécanismes d'interactions de NPs thérapeutiques avec des cellules vivantes, en particulier les mécanismes d'internalisation cellulaire et leur subséquente sécrétion par les cellules, leur localisation cellulaire, leur transport à travers des couches cellulaires, et l'évaluation des effets de NPs sur le métabolisme cellulaire, en adaptant les méthodes existante d'évaluation cyto-toxico logique s in vitro. Pour ces expériences, les effets biologiques de nanoparticules d'intérêt thérapeutique, telles que des NPs d'oxyde de titane (TiO2), des NPs fluorescents de silicate de 2 tailles différentes, des NPs, d'oxyde de fer super-para-magnétiques ultra-petites (USPIO), soit non- enrobées soit enrobées d'acide oléique ou de polyvinylamine (aminoPVA), et des NPs d'acide poly(lactique-co-glycolique)-polyethylene-oxide (PLGA-PEO) ont été évalués. Les résultats ont démontré que les NPs sont internalisées par les cellules en fonction de leur taille, composition chimique, enrobage de surface, et également du type de cellules utilisées. L'internalisation cellulaire des USPIO NPs a été augmentée en présence d'un aimant externe. Aucune des NPs de fer et de silicate n'a été transportée à travers des couches de cellules épithéliales du rein ou endothéliales du cerveau, même en présence d'un aimant. Cependant, en développant un modèle original de barrière endothélium-glioblastome, un transfert direct de NPs d'oxyde de fer de cellule endothéliale à cellule de glioblastome a été démontré. A la suite de leur internalisation les NPs d'oxyde de fer et de titane sont relâchées par des cellules épithéliales du rein, mais pas des cellules endothéliales du cerveau. Dans les cellules endothéliales du cerveau ces NPs induisent en fonction de leur état d'agglomération un stress oxydatif et des mécanismes d'autophagie, ainsi que des dommages à l'ADN des cellules exposées aux NPs d'oxyde de titane. En conclusion, les résultats obtenus élargissent les connaissances sur les effets exercés par des NPs sur des cellules vivantes et ont permis de développer les outils expérimentaux pour étudier ces effets in vitro, réduisant ainsi le recours à des expériences sur animaux.
Resumo:
Nanogenotoxicity is a crucial endpoint in safety testing of nanomaterials as it addresses potential mutagenicity, which has implications for risks of both genetic disease and carcinogenesis. Within the NanoTEST project, we investigated the genotoxic potential of well-characterised nanoparticles (NPs): titanium dioxide (TiO2) NPs of nominal size 20 nm, iron oxide (8 nm) both uncoated (U-Fe3O4) and oleic acid coated (OC-Fe3O4), rhodamine-labelled amorphous silica 25 (Fl-25 SiO2) and 50 nm (Fl-50 SiO) and polylactic glycolic acid polyethylene oxide polymeric NPs - as well as Endorem® as a negative control for detection of strand breaks and oxidised DNA lesions with the alkaline comet assay. Using primary cells and cell lines derived from blood (human lymphocytes and lymphoblastoid TK6 cells), vascular/central nervous system (human endothelial human cerebral endothelial cells), liver (rat hepatocytes and Kupffer cells), kidney (monkey Cos-1 and human HEK293 cells), lung (human bronchial 16HBE14o cells) and placenta (human BeWo b30), we were interested in which in vitro cell model is sufficient to detect positive (genotoxic) and negative (non-genotoxic) responses. All in vitro studies were harmonized, i.e. NPs from the same batch, and identical dispersion protocols (for TiO2 NPs, two dispersions were used), exposure time, concentration range, culture conditions and time-courses were used. The results from the statistical evaluation show that OC-Fe3O4 and TiO2 NPs are genotoxic in the experimental conditions used. When all NPs were included in the analysis, no differences were seen among cell lines - demonstrating the usefulness of the assay in all cells to identify genotoxic and non-genotoxic NPs. The TK6 cells, human lymphocytes, BeWo b30 and kidney cells seem to be the most reliable for detecting a dose-response.
Resumo:
The study was carried out to understand the effect of silver-silica nanocomposite (Ag-SiO2NC) on the cell wall integrity, metabolism and genetic stability of Pseudomonas aeruginosa, a multiple drugresistant bacterium. Bacterial sensitivity towards antibiotics and Ag-SiO2NC was studied using standard disc diffusion and death rate assay, respectively. The effect of Ag-SiO2NC on cell wall integrity was monitored using SDS assay and fatty acid profile analysis while the effect on metabolism and genetic stability was assayed microscopically, using CTC viability staining and comet assay, respectively. P. aeruginosa was found to be resistant to β-lactamase, glycopeptidase, sulfonamide, quinolones, nitrofurantoin and macrolides classes of antibiotics. Complete mortality of the bacterium was achieved with 80 μgml-1 concentration of Ag-SiO2NC. The cell wall integrity reduced with increasing time and reached a plateau of 70 % in 110 min. Changes were also noticed in the proportion of fatty acids after the treatment. Inside the cytoplasm, a complete inhibition of electron transport system was achieved with 100 μgml-1 Ag-SiO2NC, followed by DNA breakage. The study thus demonstrates that Ag-SiO2NC invades the cytoplasm of the multiple drug-resistant P. aeruginosa by impinging upon the cell wall integrity and kills the cells by interfering with electron transport chain and the genetic stability