995 resultados para Signalling networks
Resumo:
The competition among the companies depends on the velocity and efficience they can create and commercialize knowledge in a timely and cost-efficient manner. In this context, collaboration emerges as a reaction to the environmental changes. Although strategic alliances and networks have been exploited in the strategic literature for decades, the complexity and continuous usage of these cooperation structures, in a world of growing competition, justify the continuous interest in both themes. This article presents a scanning of the contemporary academic production in strategic alliances and networks, covering the period from January 1997 to august 2007, based on the top five journals accordingly to the journal of Citation Report 2006 in the business and management categories simultaneously. The results point to a retraction in publications about strategic alliances and a significant growth in the area of strategic. networks. The joint view of strategic alliances and networks, cited by some authors a the evolutionary path of study, still did not appear salient. The most cited topics found in the alliance literature are the governance structure, cooperation, knowledge transfer, culture, control, trust, alliance formation,,previous experience, resources, competition and partner selection. The theme network focuses mainly on structure, knowledge transfer and social network, while the joint vision is highly concentrated in: the subjects of alliance formation and the governance choice.
Resumo:
Protein-energy malnutrition (PEM) is an important public health problem affecting millions of people worldwide. PEM decreases resistance to infection, impairing a number of physiological processes. In unstimulated cells, NF-kappa B is kept from binding to its consensus sequence by the inhibitor I kappa B alpha, which retains NF-kappa B in the cytoplasm. Upon various signals, such as lipopolysaccharide (LPS), I kappa B alpha is rapidly degraded and NF-kappa B is induced to translocate into the nucleus, where it activates expression of various genes that participate in the inflammatory response, including those involved in the synthesis of TNF-alpha. TRAF-6 is a cytoplasmic adapter protein that links the stimulatory signal from Toll like receptor-4 to NF-kappa B. The aim of this study was to evaluate the effect of malnutrition on induction of TNF-a by LPS in murine peritoneal macrophages. We evaluated peritoneal cellularity, the expression of MyD88, TRAF-6, IKK, I kappa B alpha and NF-kappa B, NF-kappa B activation and TNF-alpha mRNA and protein synthesis inmacrophages. Two-month-old male BALB/Cmice were submitted to PEM with a low-protein diet that contained 2% protein, compared to 12% protein in the control diet. When the experimental group had lost about 20% of the original body weight, it was used in the subsequent experiments. Malnourished animals presented anemia, leucopenia and severe reduction in peritoneal cavity cellularity. TNF-a mRNA and protein levels of macrophages stimulated with LPS were significantly lower in malnourished animals. PEM also decreased TRAF-6 expression and NF-kappa B activation after LPS stimulation. These results led us to conclude that PEM changes NF-kappa B signalling pathway in macrophages to LPS stimulus.
Resumo:
In this paper, we propose a fast adaptive importance sampling method for the efficient simulation of buffer overflow probabilities in queueing networks. The method comprises three stages. First, we estimate the minimum cross-entropy tilting parameter for a small buffer level; next, we use this as a starting value for the estimation of the optimal tilting parameter for the actual (large) buffer level. Finally, the tilting parameter just found is used to estimate the overflow probability of interest. We study various properties of the method in more detail for the M/M/1 queue and conjecture that similar properties also hold for quite general queueing networks. Numerical results support this conjecture and demonstrate the high efficiency of the proposed algorithm.
Resumo:
The reconstruction of power industries has brought fundamental changes to both power system operation and planning. This paper presents a new planning method using multi-objective optimization (MOOP) technique, as well as human knowledge, to expand the transmission network in open access schemes. The method starts with a candidate pool of feasible expansion plans. Consequent selection of the best candidates is carried out through a MOOP approach, of which multiple objectives are tackled simultaneously, aiming at integrating the market operation and planning as one unified process in context of deregulated system. Human knowledge has been applied in both stages to ensure the selection with practical engineering and management concerns. The expansion plan from MOOP is assessed by reliability criteria before it is finalized. The proposed method has been tested with the IEEE 14-bus system and relevant analyses and discussions have been presented.
Resumo:
Bright coloration and complex visual displays are frequent and well described in many lizard families. Reflectance spectrometry which extends into the ultraviolet (UV) allows measurement of such coloration independent of our visual system. We examined the role of colour in signalling and mate choice in the agamid lizard Ctenophorus ornatus. We found that throat reflectance strongly contrasted against the granite background of the lizards' habitat. The throat may act as a signal via the head-bobbing and push-up displays of C. ornatus. Dorsal coloration provided camouflage against the granite background, particularly in females. C. ornatus was sexually dichromatic for all traits examined including throat UV reflectance which is beyond human visual perception. Female throats were highly variable in spectral reflectance and males preferred females with higher throat chroma between 370 and 400 nm. However, female throat UV chroma is strongly correlated to both throat brightness and chest UV chroma and males may choose females on a combination of these colour variables. There was no evidence that female throat or chest coloration was an indicator of female quality. However, female brightness significantly predicted a female's laying date and, thus, may signal receptivity. One function of visual display in this species appears to be intersexual signalling, resulting in male choice of females.
Resumo:
Continuous-valued recurrent neural networks can learn mechanisms for processing context-free languages. The dynamics of such networks is usually based on damped oscillation around fixed points in state space and requires that the dynamical components are arranged in certain ways. It is shown that qualitatively similar dynamics with similar constraints hold for a(n)b(n)c(n), a context-sensitive language. The additional difficulty with a(n)b(n)c(n), compared with the context-free language a(n)b(n), consists of 'counting up' and 'counting down' letters simultaneously. The network solution is to oscillate in two principal dimensions, one for counting up and one for counting down. This study focuses on the dynamics employed by the sequential cascaded network, in contrast to the simple recurrent network, and the use of backpropagation through time. Found solutions generalize well beyond training data, however, learning is not reliable. The contribution of this study lies in demonstrating how the dynamics in recurrent neural networks that process context-free languages can also be employed in processing some context-sensitive languages (traditionally thought of as requiring additional computation resources). This continuity of mechanism between language classes contributes to our understanding of neural networks in modelling language learning and processing.
Resumo:
Four ramosus mutants with increased branching at basal and aerial nodes have been used to investigate the genetic regulation of bud outgrowth in Pisum sativum L. (garden pea). Studies of long-distance signalling, xylem sap cytokinin concentrations, shoot auxin level, auxin transport and auxin response are discussed. A model of branching control is presented that encompasses two graft-transmissible signals in addition to auxin and cytokinin. Mutants rms1 through rms4 are not deficient in indole-3-acetic acid (IAA) or in the basipetal transport of this hormone. Three of the four mutants, rms1, rms3 and rms4, have very reduced cytokinin concentrations in xylem sap from roots. This reduction in xylem sap cytokinin concentration appears to be caused by a property of the shoot and may be part of a feedback mechanism induced by an aspect of bud outgrowth. The shoot-to-root feedback signal is unlikely to be auxin itself, as auxin levels and transport are not correlated with xylem sap cytokinin concentrations in various intact and grafted mutant and wild-type plants. Rms1 and Rms2 act in shoot and rootstock to regulate the level or transport of graft-transmissible signals. Various grafting studies and double mutant analyses have associated Rms2 with the regulation of the shoot-to-root feedback signal. Rms1 is associated with a second unknown graft-transmissible signal that is postulated to move in the direction of root-to-shoot. Exogenous auxin appears to interact with both of the signals regulated by Rms1 and Rms2 in the inhibition of branching after decapitation. The action of Rms3 and Rms4 is less apparent at this stage, although both appear to act largely in the shoot.
Resumo:
With the advent of functional neuroimaging techniques, in particular functional magnetic resonance imaging (fMRI), we have gained greater insight into the neural correlates of visuospatial function. However, it may not always be easy to identify the cerebral regions most specifically associated with performance on a given task. One approach is to examine the quantitative relationships between regional activation and behavioral performance measures. In the present study, we investigated the functional neuroanatomy of two different visuospatial processing tasks, judgement of line orientation and mental rotation. Twenty-four normal participants were scanned with fMRI using blocked periodic designs for experimental task presentation. Accuracy and reaction time (RT) to each trial of both activation and baseline conditions in each experiment was recorded. Both experiments activated dorsal and ventral visual cortical areas as well as dorsolateral prefrontal cortex. More regionally specific associations with task performance were identified by estimating the association between (sinusoidal) power of functional response and mean RT to the activation condition; a permutation test based on spatial statistics was used for inference. There was significant behavioral-physiological association in right ventral extrastriate cortex for the line orientation task and in bilateral (predominantly right) superior parietal lobule for the mental rotation task. Comparable associations were not found between power of response and RT to the baseline conditions of the tasks. These data suggest that one region in a neurocognitive network may be most strongly associated with behavioral performance and this may be regarded as the computationally least efficient or rate-limiting node of the network.
Resumo:
This paper is concerned with the use of scientific visualization methods for the analysis of feedforward neural networks (NNs). Inevitably, the kinds of data associated with the design and implementation of neural networks are of very high dimensionality, presenting a major challenge for visualization. A method is described using the well-known statistical technique of principal component analysis (PCA). This is found to be an effective and useful method of visualizing the learning trajectories of many learning algorithms such as back-propagation and can also be used to provide insight into the learning process and the nature of the error surface.
Resumo:
The immunophilin cochaperones, cyclophilin 40 (CyP40), FKBP51 and FKBP52 and PP5, a serine/threonine protein phosphatase, have been implicated as modulators of steroid receptor function through their association with Hsp90, a molecular chaperone with a key role in steroid hormone signalling. Although progress towards a satisfying definition for the role of these components in steroid receptor complexes has been slow, recent developments arising from novel approaches in both yeast and mammalian systems, together with available crystal structures for Hsp90 and some of these cochaperones, are beginning to provide important clues about their function. Hsp90, recently identified as a member of the GHKL superfamily of ATPases, is the central player in receptor assembly, an energy-driven process that allows receptor and the immunophilins to be proximally located, or to interact directly, on a Hsp90 scaffold. Immunophilin structure, relative abundance, their binding affinity for Hsp90 and their ability to interact with specific receptors may all contribute to a selective preference of the immunophilins for individual receptors. Association of receptors with different immunophilins leads to differential functional consequences for receptor activity. Observations of glucocorticoid resistance in New World primates, attributed to FKBP51 overexpression and incorporation into glucocorticoid receptor complexes, have provided the first evidence that these cochaperones can control hormone-binding affinity. Application of a yeast model to FKBP52 function in the glucocorticoid receptor system has now provided crucial evidence that this immunophilin enhances receptor transcriptional activity by increasing receptor avidity for hormone through PPIase-mediated conformational changes in the ligand-binding domain. A recent novel finding suggests that hormone binding may induce a functional exchange of immunophilins in receptor complexes and that the modified complex directs receptor to the nucleus.