991 resultados para Sharp
Resumo:
Media organizations are simultaneously key elements of an effective democracy and, for the most part, commercial entities seeking success in the market. They play an essential role in the formation of public opinion and the influence on personal choices. Yet most of them are commercial enterprises seeking readers or viewers, advertising, favorable regulatory decisions for their media, and other assets. This creates some intrinsic difficulties and produces some sharp tensions within media ethics. In this article, we examine such tensionsin theory and practice. We then consider the feasibility of introducing an ethics regime to the media industrya regime that would be effective in a deregulated environment in protecting public interest and social responsibility. In the article, we also outline a rationale and a methodology for the institutionalization of an acceptable and workable media ethics regime that aims to protect the integrity of the industry in a future of undoubtedly increasing commercial pressure.
Resumo:
The mineral lewisite, (Ca,Fe,Na)2(Sb,Ti)2O6(O,OH)7 an antimony bearing mineral has been studied by Raman spectroscopy. A comparison is made with the Raman spectra of other minerals including bindheimite, stibiconite and romite. The mineral lewisite is characterised by an intense sharp band at 517 cm-1 with a shoulder at 507 cm-1 assigned to SbO stretching modes. Raman bands of medium intensity for lewisite are observed at 300, 356 and 400 cm-1. These bands are attributed to OSbO bending vibrations. Raman bands in the OH stretching region are observed at 3200, 3328, 3471 cm-1 with a distinct shoulder at 3542 cm-1. The latter is assigned to the stretching vibration of OH units. The first three bands are attributed to water stretching vibrations. The observation of bands in the 3200 to 3500 cm-1 region suggests that water is involved in the lewisite structure. If this is the case then the formula may be better written as Ca, Fe2+, Na)2(Sb, Ti)2(O,OH)7 xH2O.
Resumo:
Free-radical processes underpin the thermo-oxidative degradation of polyolefins. Thus, to extend the lifetime of these polymers, stabilizers are generally added during processing to scavenge the free radicals formed as the polymer degrades. Nitroxide radical precursors, such as hindered amine stabilizers (HAS),1,2 are common polypropylene additives as the nitroxide moiety is a potent scavenger of polymer alkyl radicals (R). Oxidation of HAS by radicals formed during polypropylene degradation yields nitroxide radicals (RRNO), which rapidly trap the polymer degradation species to produce alkoxyamines, thus retarding oxidative polymer degradation. This increase in polymer stability is demonstrated by a lengthening of the induction period of the polymer (the time prior to a sharp rise in the oxidation of the polymer). Instrumental techniques such as chemiluminescence or infrared spectroscopy are somewhat limited in detecting changes in the polymer during the initial stages of degradation. Therefore, other methods for observing polymer degradation have been sought as the useful life of a polymer does not extend far beyond its induction period
Resumo:
Raman spectra of antimonate mineral brizziite NaSbO3 were studied and related to the structure of the mineral. Two sharp bands at 617 and 660 cm-1 are attributed to the SbO3- symmetric stretching mode. The reason for two symmetric stretching vibrations depends upon the bonding of the SbO3- units. The band at 617 cm-1 is assigned to bonding through the Sb and the 660 cm-1 to bonding through the oxygen. The low intensity band at 508 cm-1 is ascribed to the SbO antisymmetric stretching vibration. Low intensity bands were found at 503, 526 and 578 cm-1. Sharp Raman bands observed at 204, 230, 307 and 315 cm-1are assigned to OSbO bending modes. Raman spectroscopy enables a better understanding of the molecular structure of the mineral brizziite.
Resumo:
The transition of cubic indium hydroxide to cubic indium oxide has been studied by thermogravimetric analysis complimented with hot stage Raman spectroscopy. Thermal analysis shows the transition of In(OH)3 to In2O3 occurs at 219C. The structure and morphology of In(OH)3 synthesised using a soft chemical route at low temperatures was confirmed by X-ray diffraction and scanning electron microscopy. A topotactical relationship exists between the micro/nano-cubes of In(OH)3 and In2O3. The Raman spectrum of In(OH)3 is characterised by an intense sharp band at 309 cm-1 attributed to 1 In-O symmetric stretching mode, bands at 1137 and 1155 cm-1 attributed to In-OH deformation modes, bands at 3083, 3215, 3123 and 3262 cm-1 assigned to the OH stretching vibrations. Upon thermal treatment of In(OH)3 new Raman bands are observed at 125, 295, 488 and 615 cm-1 attributed to In2O3. Changes in the structure of In(OH)3 with thermal treatment is readily followed by hot stage Raman spectroscopy.
Resumo:
What does it mean when we design for accessibility, inclusivity and "dissolving boundaries" -- particularly those boundaries between the design philosophy, the software/interface actuality and the stated goals? This paper is about the principles underlying a research project called 'The Little Grey Cat engine' or greyCat. GreyCat has grown out of our experience in using commercial game engines as production environments for the transmission of culture and experience through the telling of individual stories. The key to this endeavour is the potential of the greyCat software to visualize worlds and the manner in which non-formal stories are intertwined with place. The apparently simple dictum of "show, don't tell" and the use of 3D game engines as a medium disguise an interesting nexus of problematic issues and questions, particularly in the ramifications for cultural dimensions and participatory interaction design. The engine is currently in alpha and the following paper is its background story. In this paper we discuss the problematic, thrown into sharp relief by a particular project, and we continue to unpack concepts and early designs behind the greyCat itself.
Resumo:
The application of near-infrared and infrared spectroscopy has been used for identification and distinction of basic Cu-sulphates that include devilline, chalcoalumite and caledonite. Near-infrared spectra of copper sulphate minerals confirm copper in divalent state. Jahn-Teller effect is more significant in chalcoalumite where 2B1g 2B2g transition band shows a larger splitting (490 cm-1) confirming more distorted octahedral coordination of Cu2+ ion. One symmetrical band at 5145 cm-1 with shoulder band 5715 cm-1 result from the absorbed molecular water in the copper complexes are the combinations of OH vibrations of H2O. One sharp band at around 3400 cm-1 in IR common to the three complexes is evidenced by Cu-OH vibrations. The strong absorptions observed at 1685 and 1620 cm-1 for water bending modes in two species confirm strong hydrogen bonding in devilline and chalcoalumite. The multiple bands in v3 and v4(SO4)2- stretching regions are attributed to the reduction of symmetry to the sulphate ion from Td to C2V. Chalcoalumite, the excellent IR absorber over the range 3800-500 cm-1 is treated as most efficient heat insulator among the Cu-sulphate complexes.
Resumo:
The removal of arsenate anions from aqueous media, sediments and wasted soils is of environmental significance. The reaction of gypsum with the arsenate anion results in pharmacolite mineral formation, together with related minerals. Raman and infrared spectroscopy have been used to study the mineral pharmacolite Ca(HAsO4)2H2O. The mineral is characterised by an intense Raman band at 865 cm-1 assigned to the (AsO4)3- symmetric stretching mode. The equivalent infrared band is found at 864 cm-1. The low intensity Raman band at 886 cm-1 provides evidence for (AsO3OH)2-. A series of overlapping bands in the 300 to 450 cm-1 are attributed to 2 and 4 bending modes. Prominent Raman bands at around 3187 cm-1 are assigned to water OH stretching vibrations and the two sharp bands at 3425 and 3526 cm-1 to the OH stretching vibrations of (HOAsO3) units.
Resumo:
Raman spectra of bottinoite Ni[Sb(OH)6].6H2O were studied, and related to the molecular structure of the mineral. An intense sharp Raman band at 618 cm-1 is attributed to the SbO symmetric stretching mode. The low intensity band at 735 cm-1 is ascribed to the SbO antisymmetric stretching vibration. Low intensity Raman bands were found at 501, 516 and 578 cm-1. Four Raman bands observed at 1045, 1080, 1111 and 1163 cm-1 are assigned to SbOH deformation modes. A complex pattern resulting from the overlapping band of the water and hydroxyl units is observed. Raman bands are observed at 3223, 3228, 3368, 3291, 3458 and 3510 cm-1. The first two Raman bands are assigned to water stretching vibrations. The two higher wavenumber Raman bands observed at 3466 and 3552 cm-1 and two infrared bands at 3434 and 3565 cm-1 are assigned to the stretching vibrations of the hydroxyl units. Observed Raman and infrared bands are connected with O-HO hydrogen bonds and their lengths 2.72, 2.79, 2.86, 2.88 and 3.0 (Raman) and 2.73, 2.83 and 3.07 (infrared).
Resumo:
This article reviews what international evidence exists on the impact of civil and criminal sanctions upon serious tax noncompliance by individuals. This construct lacks sharp definitional boundaries but includes large tax fraud and large-scale evasion that are not dealt with as fraud. Although substantial research and theory have been developed on general tax evasion and compliance, their conclusions might not apply to large-scale intentional fraudsters. No scientifically defensible studies directly compared civil and criminal sanctions for tax fraud, although one U.S. study reported that significantly enhanced criminal sanctions have more effects than enhanced audit levels. Prosecution is public, whereas administrative penalties are confidential, and this fact encourages those caught to pay heavy penalties to avoid publicity, a criminal record, and imprisonment.
Resumo:
Described as ferociously sharp, Crossbow Productions Mrs Klein is about the formidable psychoanalyst Melanie Klein whose ruthlessly objective case studies of her children won her acclaim as both an inspiring and appalling woman. Did her study drive her son to suicide? Starring Therese Collie (La Boite), Louise Brehmer (QTC, La Boite) and Caroline Beck (New York Broadway credits). Directed by Dr Christian Heim. Live classical music and sharp wit combine to make this a memorable production.
Resumo:
Sustainable urban development and the liveability of a city are increasingly important issues in the context of land use planning and infrastructure management. In recent years, the promotion of sustainable urban development in Australia and overseas is facing various physical, socio-economic and environmental challenges. These challenges and problems arise from the lack of capability of local governments to accommodate the needs of the population and economy in a relatively short timeframe. The planning of economic growth and development is often dealt with separately and not included in the conventional land use planning process. There is also a sharp rise in the responsibilities and roles of local government for infrastructure planning and management. This increase in responsibilities means that local elected officials and urban planners have less time to prepare background information and make decisions. The Brisbane Urban Growth Model has proven initially successful in providing a dynamic platform to ensure timely and coordinated delivery of urban infrastructure. Most importantly, this model is the first step for local governments in moving toward a systematic approach to pursuing sustainable and effective urban infrastructure management.
Resumo:
Many industrial processes and systems can be modelled mathematically by a set of Partial Differential Equations (PDEs). Finding a solution to such a PDF model is essential for system design, simulation, and process control purpose. However, major difficulties appear when solving PDEs with singularity. Traditional numerical methods, such as finite difference, finite element, and polynomial based orthogonal collocation, not only have limitations to fully capture the process dynamics but also demand enormous computation power due to the large number of elements or mesh points for accommodation of sharp variations. To tackle this challenging problem, wavelet based approaches and high resolution methods have been recently developed with successful applications to a fixedbed adsorption column model. Our investigation has shown that recent advances in wavelet based approaches and high resolution methods have the potential to be adopted for solving more complicated dynamic system models. This chapter will highlight the successful applications of these new methods in solving complex models of simulated-moving-bed (SMB) chromatographic processes. A SMB process is a distributed parameter system and can be mathematically described by a set of partial/ordinary differential equations and algebraic equations. These equations are highly coupled; experience wave propagations with steep front, and require significant numerical effort to solve. To demonstrate the numerical computing power of the wavelet based approaches and high resolution methods, a single column chromatographic process modelled by a Transport-Dispersive-Equilibrium linear model is investigated first. Numerical solutions from the upwind-1 finite difference, wavelet-collocation, and high resolution methods are evaluated by quantitative comparisons with the analytical solution for a range of Peclet numbers. After that, the advantages of the wavelet based approaches and high resolution methods are further demonstrated through applications to a dynamic SMB model for an enantiomers separation process. This research has revealed that for a PDE system with a low Peclet number, all existing numerical methods work well, but the upwind finite difference method consumes the most time for the same degree of accuracy of the numerical solution. The high resolution method provides an accurate numerical solution for a PDE system with a medium Peclet number. The wavelet collocation method is capable of catching up steep changes in the solution, and thus can be used for solving PDE models with high singularity. For the complex SMB system models under consideration, both the wavelet based approaches and high resolution methods are good candidates in terms of computation demand and prediction accuracy on the steep front. The high resolution methods have shown better stability in achieving steady state in the specific case studied in this Chapter.
Resumo:
Raman spectra of the uranyl titanate mineral holfertite CaxU2-xTi(O8-xOH4x)3H2O were analysed and related to the mineral structure. Observed bands are attributed to the TiO and (UO2)2+ stretching and bending vibrations, U-OH bending vibrations, H2O stretching, bending. The mineral holfertite is metamict as is evidenced by order/disorder of the mineral. Unexpectedly the Raman spectrum of holfertite does not show any metamictization. The intensity of the UO stretching and bending modes show normal intensity and the bands are sharp.
Raman spectroscopic study of a hydroxy-arsenate mineral containing bismuth-atelestite Bi2O(OH)(AsO4)
Resumo:
The Raman spectrum of atelestite Bi2O(OH)(AsO4), a hydroxy-arsenate mineral containing bismuth, has been studied in terms of spectra-structure relations. The studied spectrum is compared with the Raman spectrum of atelestite downloaded from the RRUFF database. The sharp intense band at 834 cm-1 is assigned to the 1 AsO43- (A1) symmetric stretching mode and the three bands at 767, 782 and 802 cm-1 to the 3 AsO43- antisymmetric stretching modes. The bands at 310, 324, 353, 370, 395, 450, 480 and 623 cm-1 are assigned to the corresponding 4 and 2 bending modes and Bi-O-Bi (vibration of bridging oxygen) and Bi-O (vibration of non-bridging oxygen) stretching vibrations. Lattice modes are observed at 172, 199 and 218 cm-1. A broad low intensity band at 3095 cm-1 is attributed to the hydrogen bonded OH units in the atelestite structure. A weak band at 1082 cm-1 is assigned to (Bi-OH) vibration.