981 resultados para Sex chromosome system
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pholcidae (Haplogynae) encompasses 967 described species, of which only 14 have been cytogenetic analyzed. Several chromosomal features have already been described including presence of meta- and sub-metacentric chromosomes and sex determination chromosome system (SDCS) of the X, X1X2Y, and X1X2 types, which contrast with the telo- and acrocentric chromosomes and SDCS of the X1X2 type typical of entelegyne spiders. To obtain further cytogenetic information for the family, we examined two pholcid species, Crossopriza lyoni (Blackwall 1867) and Physocyclus globosus (Taczanowski 1874) using both conventional staining and silver staining techniques. Crossopriza lyoni exhibited 2n = 23 = 22 + X in males and 2n = 24 = 22 + XX in females, while P. globosus showed 2n = 15 = 14 + X and 4n = 30 = 28 + 2X, both in male adults, 2n = 16 = 14 + XX in female adults and embryos, and 2n = 15 = 14 + X in male embryos. Both species revealed predominately metacentric and submetacentric chromosomes and a SDCS of the X/XX type. The cytogenetic data obtained in this work and those already recorded for C. lyoni indicate interpopulational and intraspecific numerical chromosome variation, suggesting the presence of chromosomal races or cytotypes in this species. The intraindividual numerical chromosome variation observed in male adult specimens of P. globosus may be explained by the presence of cytoplasmatic bridges between germ cells. The use of the silver staining technique to reveal the nucleolar organizer region (NOR) showed that chromosome pairs 4 and 6 and the X chromosome in C. lyoni are telomeric NOR-bearers, and that the chromosome pair 2 in P. globosus possesses a proximal NOR in the long arm.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Cytogenetic analysis of Astylus antis using mitotic and meiotic cells was performed to characterize the haploid and diploid numbers, sex determination system, chromosome morphology, constitutive heterochromatin distribution pattern and chromosomes carrying nucleolus organizer regions (NORs). Analysis of spermatogonial metaphase cells revealed the diploid number 2n = 18, with mostly metacentric chromosomes. Metaphase I cells exhibited 2n = 8II+Xyp and a parachute configuration of the sex chromosomes. Spermatogonial metaphase cells submitted to C-banding showed the presence of small dots of constitutive heterochromatin in the centromeric regions of nearly all the autosomes and on the short arm of the X chromosome (Xp), as well as an additional band on one of the arms of pair 1. Mitotic cells submitted to double staining with base-specific fluorochromes (DAPI-CMA3) revealed no regions rich in A+T or G+C sequences. Analysis of spermatogonial mitotic cells after sequential Giemsa/AgNO3 staining did not reveal any specific mark on the chromosomes. Meiotic metaphase I cells stained with silver nitrate revealed a strong impregnation associated to the sex chromosomes, and in situ hybridization with an 18S rDNA probe showed ribosomal cistrons in an autosomal bivalent.
Resumo:
The aim of this study is to quantify the prevalence and types of rare chromosome abnormalities (RCAs) in Europe for 2000-2006 inclusive, and to describe prenatal diagnosis rates and pregnancy outcome. Data held by the European Surveillance of Congenital Anomalies database were analysed on all the cases from 16 population-based registries in 11 European countries diagnosed prenatally or before 1 year of age, and delivered between 2000 and 2006. Cases were all unbalanced chromosome abnormalities and included live births, fetal deaths from 20 weeks gestation and terminations of pregnancy for fetal anomaly. There were 10,323 cases with a chromosome abnormality, giving a total birth prevalence rate of 43.8/10,000 births. Of these, 7335 cases had trisomy 21,18 or 13, giving individual prevalence rates of 23.0, 5.9 and 2.3/10,000 births, respectively (53, 13 and 5% of all reported chromosome errors, respectively). In all, 473 cases (5%) had a sex chromosome trisomy, and 778 (8%) had 45,X, giving prevalence rates of 2.0 and 3.3/10,000 births, respectively. There were 1,737 RCA cases (17%), giving a prevalence of 7.4/10,000 births. These included triploidy, other trisomies, marker chromosomes, unbalanced translocations, deletions and duplications. There was a wide variation between the registers in both the overall prenatal diagnosis rate of RCA, an average of 65% (range 5-92%) and the prevalence of RCA (range 2.4-12.9/10,000 births). In all, 49% were liveborn. The data provide the prevalence of families currently requiring specialised genetic counselling services in the perinatal period for these conditions and, for some, long-term care.
Resumo:
Separate sexes have evolved on numerous independent occasions from hermaphroditic ancestors in flowering plants. The mechanisms of sex determination is known for only a handful of such species, but, in those that have been investigated, it usually involves alleles segregating at a single locus, sometimes on heteromorphic sex chromosomes. In the genus Mercurialis, transitions between combined (hermaphroditism) and separate sexes (dioecy or androdioecy, where males co-occur with hermaphrodites rather than females) have occurred more than once in association with hybridisation and shifts in ploidy. Previous work has pointed to an unusual 3-locus system of sex determination in dioecious populations. Here, we use crosses and genotyping for a sex-linked marker to reject this model: sex in diploid dioecious M. annua is determined at a single locus with a dominant male-determining allele (an XY system). We also crossed individuals among lineages of Mercurialis that differ in their ploidy and sexual system to ascertain the extent to which the same sex-determination system has been conserved following genome duplication, hybridisation and transitions between dioecy and hermaphroditism. Our results indicate that the male-determining element is fully capable of determining gender in the progeny of hybrids between different lineages. Specifically, males crossed with females or hermaphrodites always generate 1:1 male:female or male:hermaphrodite sex ratios, respectively, regardless of the ploidy levels involved (diploid, tetraploid or hexaploid). Our results throw further light on the genetics of the remarkable variation in sexual systems in the genus Mercurialis. They also illustrate the almost identical expression of sex-determining alleles in terms of sexual phenotypes across multiple divergent backgrounds, including those that have lost separate sexes altogether.
Resumo:
Mammalian sex chromosomes stem from ancestral autosomes and have substantially differentiated. It was shown that X-linked genes have generated duplicate intronless gene copies (retrogenes) on autosomes due to this differentiation. However, the precise driving forces for this out-of-X gene "movement" and its evolutionary onset are not known. Based on expression analyses of male germ-cell populations, we here substantiate and extend the hypothesis that autosomal retrogenes functionally compensate for the silencing of their X-linked housekeeping parental genes during, but also after, male meiotic sex chromosome inactivation (MSCI). Thus, sexually antagonistic forces have not played a major role for the selective fixation of X-derived gene copies in mammals. Our dating analyses reveal that although retrogenes were produced ever since the common mammalian ancestor, selectively driven retrogene export from the X only started later, on the placental mammal (eutherian) and marsupial (metatherian) lineages, respectively. Together, these observations suggest that chromosome-wide MSCI emerged close to the eutherian-marsupial split approximately 180 million years ago. Given that MSCI probably reflects the spread of the recombination barrier between the X and Y, crucial for their differentiation, our data imply that these chromosomes became more widely differentiated only late in the therian ancestor, well after the divergence of the monotreme lineage. Thus, our study also provides strong independent support for the recent notion that our sex chromosomes emerged, not in the common ancestor of all mammals, but rather in the therian ancestor, and therefore are much younger than previously thought
Resumo:
Conservation programs that deal with small or declining populations often aim at a rapid increase of population size to above-critical levels in order to avoid the negative effects of demographic stochasticity and genetic problems like inbreeding depression, fixation of deleterious alleles, or a general loss of genetic variability and hence of evolutionary potential. In some situations, population growth is determined by the number of females available for reproduction, and manipulation of family sex ratios towards more daughters has beneficial effects. If sex determination is predominantly genetic but environmentally reversible, as is the case in many amphibia, reptiles, and fish, Trojan sex chromosomes could be introduced into populations in order to change sex ratios towards more females. We analyse the possible consequences for the introduction of XX-males (XX individuals that have been changed to phenotypic males in a XY/XX sex determination system) and ZW males, WW males, or WW females (in a ZZ/ZW sex determination system). We find that the introduction of WW individuals can be most effective for an increase of population growth, especially if the induced sex change has little or no effect on viability.
Resumo:
Contrasting with birds and mammals, most ectothermic vertebrates present homomorphic sex chromosomes, which might be due either to a high turnover rate or to occasional X-Y recombination. We tested these two hypotheses in a group of Palearctic green toads that diverged some 3.3 million years ago. Using sibship analyses of sex-linked markers, we show that all four species investigated share the same pair of sex chromosomes and a pattern of male heterogamety with drastically reduced X-Y recombination in males. Phylogenetic analyses of sex-linked sequences show that X and Y alleles cluster by species, not by gametolog. We conclude that X-Y homomorphy and fine-scale sequence similarity in these species do not stem from recent sex-chromosome turnovers, but from occasional X-Y recombination.
Resumo:
In sharp contrast with birds and mammals, the sex chromosomes of ectothermic vertebrates are often undifferentiated, for reasons that remain debated. A linkage map was recently published for Rana temporaria (Linnaeus, 1758) from Fennoscandia (Eastern European lineage), with a proposed sex-determining role for linkage group 2 (LG2). We analysed linkage patterns in lowland and highland populations from Switzerland (Western European lineage), with special focus on LG2. Sibship analyses showed large differences from the Fennoscandian map in terms of recombination rates and loci order, pointing to large-scale inversions or translocations. All linkage groups displayed extreme heterochiasmy (total map length was 12.2 cM in males, versus 869.8 cM in females). Sex determination was polymorphic within populations: a majority of families (with equal sex ratios) showed a strong correlation between offspring phenotypic sex and LG2 paternal haplotypes, whereas other families (some of which with female-biased sex ratios) did not show any correlation. The factors determining sex in the latter could not be identified. This coexistence of several sex-determination systems should induce frequent recombination of X and Y haplotypes, even in the absence of male recombination. Accordingly, we found no sex differences in allelic frequencies on LG2 markers among wild-caught male and female adults, except in one high-altitude population, where nonrecombinant Y haplotypes suggest sex to be entirely determined by LG2. Multifactorial sex determination certainly contributes to the lack of sex-chromosome differentiation in amphibians.
Resumo:
Non-recombining sex chromosomes are expected to undergo evolutionary decay, ending up genetically degenerated, as has happened in birds and mammals. Why are then sex chromosomes so often homomorphic in cold-blooded vertebrates? One possible explanation is a high rate of turnover events, replacing master sex-determining genes by new ones on other chromosomes. An alternative is that X-Y similarity is maintained by occasional recombination events, occurring in sex-reversed XY females. Based on mitochondrial and nuclear gene sequences, we estimated the divergence times between European tree frogs (Hyla arborea, H. intermedia, and H. molleri) to the upper Miocene, about 5.4-7.1 million years ago. Sibship analyses of microsatellite polymorphisms revealed that all three species have the same pair of sex chromosomes, with complete absence of X-Y recombination in males. Despite this, sequences of sex-linked loci show no divergence between the X and Y chromosomes. In the phylogeny, the X and Y alleles cluster according to species, not in groups of gametologs. We conclude that sex-chromosome homomorphy in these tree frogs does not result from a recent turnover but is maintained over evolutionary timescales by occasional X-Y recombination. Seemingly young sex chromosomes may thus carry old-established sex-determining genes, a result at odds with the view that sex chromosomes necessarily decay until they are replaced. This raises intriguing perspectives regarding the evolutionary dynamics of sexually antagonistic genes and the mechanisms that control X-Y recombination.
Resumo:
We investigated sex-specific recombination rates in Hyla arborea, a species with nascent sex chromosomes and male heterogamety. Twenty microsatellites were clustered into six linkage groups, all showing suppressed or very low recombination in males. Seven markers were sex linked, none of them showing any sign of recombination in males (r=0.00 versus 0.43 on average in females). This opposes classical models of sex chromosome evolution, which envision an initially small differential segment that progressively expands as structural changes accumulate on the Y chromosome. For autosomes, maps were more than 14 times longer in females than in males, which seems the highest ratio documented so far in vertebrates. These results support the pleiotropic model of Haldane and Huxley, according to which recombination is reduced in the heterogametic sex by general modifiers that affect recombination on the whole genome.
Resumo:
The position of a gene in the genome may have important consequences for its function. Therefore, when a new duplicate gene arises, its location may be critical in determining its fate. Our recent work in humans, mouse, and Drosophila provided a test by studying the patterns of duplication in sex chromosome evolution. We revealed a bias in the generation and recruitment of new gene copies involving the X chromosome that has been shaped largely by selection for male germline functions. The gene movement patterns we observed reflect an ongoing process as some of the new genes are very young while others were present before the divergence of humans and mouse. This suggests a continuing redistribution of male-related genes to achieve a more efficient allocation of male functions. This notion should be further tested in organisms employing other sex determination systems or in organisms differing in germline sex chromosome inactivation. It is likely that the selective forces that were detected in these studies are also acting on other types of duplicate genes. As a result, future work elucidating sex chromosome differentiation by other mutational mechanisms will shed light on this important process.
Resumo:
Comparative genomic studies are revealing that, in sharp contrast with the strong stability found in birds and mammals, sex determination mechanisms are surprisingly labile in cold-blooded vertebrates, with frequent transitions between different pairs of sex chromosomes. It was recently suggested that, in context of this high turnover, some chromosome pairs might be more likely than others to be co-opted as sex chromosomes. Empirical support, however, is still very limited. Here we show that sex-linked markers from three highly divergent groups of anurans map to Xenopus tropicalis scaffold 1, a large part of which is homologous to the avian sex chromosome. Accordingly, the bird sex determination gene DMRT1, known to play a key role in sex differentiation across many animal lineages, is sex linked in all three groups. Our data provide strong support for the idea that some chromosome pairs are more likely than others to be co-opted as sex chromosomes because they harbor key genes from the sex determination pathway.
Resumo:
When sex determination in a species is predominantly genetic but environmentally reversible, exposure to (anthropogenic) changes in the environment can lead to shifts in a population's sex ratio. Such scenarios may be common in many fishes and amphibians, yet their ramifications remain largely unexplored. We used a simple model to study the (short-term) population consequences of environmental sex reversal (ESR). We examined the effects on sex ratios, sex chromosome frequencies, and population growth and persistence after exposure to environmental forces with feminizing or masculinizing tendencies. When environmental feminization was strong, X chromosomes were driven to extinction. Analogously, extinction of normally male-linked genetic factors (e.g., Y chromosomes) was caused by continuous environmental masculinization. Although moderate feminization was beneficial for population growth in the absence of large viability effects, our results suggest that the consequences of ESR are generally negative in terms of population size and the persistence of sex chromosomes. Extreme sex ratios resulting from high rates of ESR also reduced effective population sizes considerably. This may limit any evolutionary response to the deleterious effects of ESR. Our findings suggest that ESR changes population growth and sex ratios in some counter-intuitive ways and can change the predominant factor in sex determination from genetic to fully environmental, often within only a few tens of generations. Populations that lose genetic sex determination may quickly go extinct if the environmental forces that cause sex reversal cease.