929 resultados para Serum bone formation markers
Resumo:
Dietary habits have changed during the past decades towards an increasing consumption of processed foods, which has notably increased not only total dietary phosphorus (P) intake, but also intake of P from phosphate additives. While the intake of calcium (Ca) in many Western countries remains below recommended levels (800 mg/d), the usual daily P intake in a typical Western diet exceeds by 2- to 3-fold the dietary guidelines (600 mg/d). The effects of high P intake in healthy humans have been investigated seldom. In this thesis healthy 20- to 43-year-old women were studied. In the first controlled study (n = 14), we examined the effects of P doses, and in a cross-sectional study (n = 147) the associations of habitual P intakes with Ca and bone metabolism. In this same cross-sectional study, we also investigated whether differences exist between dietary P originating from natural P sources and phosphate additives. The second controlled study (n = 12) investigated whether by increasing the Ca intake, the effects of a high P intake could be reduced. The associations of habitual dietary calcium-to-phosphorus ratios (Ca:P ratio) with Ca and bone metabolism were determined in a cross-sectional study design (n = 147). In the controlled study, the oral intake of P doses (495, 745, 1245 and 1995 mg/d) with a low Ca intake (250 mg/d) increased serum parathyroid hormone (S-PTH) concentration in a dose-dependent manner. In addition, the highest P dose decreased serum ionized calcium (S-iCa) concentration and bone formation and increased bone resorption. In the second controlled study with a dietary P intake of 1850 mg/d, by increasing the Ca intake from 480 mg/d to 1080 mg/d and then to 1680 mg/d, the S-PTH concentration decreased, the S-iCa concentration increased and bone resorption decreased dose-dependently. However, not even the highest Ca intake could counteract the effect of high dietary P on bone formation, as indicated by unchanged bone formation activity. In the cross-sectional studies, a higher habitual dietary P intake (>1650 mg/d) was associated with lower S-iCa and higher S-PTH concentrations. The consumption of phosphate additive-containing foods was associated with a higher S-PTH concentration. Moreover, habitual low dietary Ca:P ratios (≤0.50, molar ratio) were associated with higher S-PTH concentrations and 24-h urinary Ca excretions, suggesting that low dietary Ca:P ratios may interfere with homeostasis of Ca metabolism and increase bone resorption. In summary, excessive dietary P intake in healthy Finnish women seems to be detrimental to Ca and bone metabolism, especially when dietary Ca intake is low. The results indicate that by increasing dietary Ca intake to the recommended level, the negative effects of high P intake could be diminished, but not totally prevented. These findings imply that phosphate additives may be more harmful than natural P. Thus, reduction of an excessively high dietary P intake is also beneficial for healthy individuals.
Resumo:
We investigated the potential of using novel zoledronic acid (ZOL)-hydroxyapatite (HA) nanoparticle based drug formulation in a rat model of postmenopausal osteoporosis. By a classical adsorption method, nanoparticles of HA loaded with ZOL (HNLZ) drug formulation with a size range of 100-130 nm were prepared. 56 female Wistar rats were ovariectomized (OVX) or sham-operated at 3 months of age. Twelve weeks post surgery, rats were randomized into seven groups and treated with various doses of HNLZ (100, 50 and 25 mu g/kg, intravenous single dose), ZOL (100 mu g/kg, intravenous single dose) and HA nanoparticle (100 mu g/kg, intravenous single dose). Untreated OVX and sham OVX served as controls. After three months treatment period, we evaluated the mechanical properties of the lumbar vertebra and femoral mid-shaft. Femurs were also tested for trabecular microarchitecture. Sensitive biochemical markers of bone formation and bone resorption in serum were also determined. With respect to improvement in the mechanical strength of the lumbar spine and the femoral mid-shaft, the therapy with HNLZ drug formulation was more effective than ZOL therapy in OVX rats. Moreover, HNLZ drug therapy preserved the trabecular microarchitecture better than ZOL therapy in OVX rats. Furthermore, the HNLZ drug formulation corrected increase in serum levels of bone-specific alkaline phosphatase, procollagen type I N-terminal propeptide, osteocalcin, tartrate-resistant acid phosphatase 5b and C-telopeptide of type 1 collagen better than ZOL therapy in OVX rats. The results strongly suggest that HNLZ novel drug formulation appears to be more effective approach for treating severe osteoporosis in humans. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The skeleton is the first and most common site of distant relapse in breast and prostate carcinomas. Tumor bone disease is responsible for a considerable morbidity, which also makes major demands on resources for healthcare provision. Increased bone resorption in tumor bone disease appears to be essentially mediated by the ostoclasts, explaining why bisphosphonates have been successfully used for the treatment of malignant ostolysis. Hypercalcemia occurs in 10-20% of the patients with advanced cancer, and the uncoupling between bone resorption and bone formation is easily demonstrated by the measurement of bone markers. The differential diagnosis between tumor-induced hypercalcemia and primary hyperparathyroidism is most often easy when using intact parathyroid hormone (PTH) assays; moreover, parathyroid hormone-related protein (PTHrP) determination can be useful in selected cases. The diagnosis of bone metastases is often easy when the patient is symptomatic. The diagnostic usefulness of bone markers is limited, and the available data indicate that bone markers are so far unsuitable for an early diagnosis of neoplastic skeletal involvement on an individual basis. However, by combining bone-specific alkaline phosphatase (BALP) or modern bone resorption markers with specific tumor markers, such as PSA or CA15.3, the diagnostic sensitivity of bone markers can be improved. Their degree of elevation correlates with the tumor burden and has been shown to be an independent prognostic factor for several tumors. On the other hand, biochemical markers of bone turnover have the unique potential to simplify and improve the monitoring of metastatic bone disease, which remains a continuous challenge for the oncologist. Peptide-bound cross-links could be quite useful to discriminate between patients progressing early on treatment from those with longer disease control. Also, the diagnostic efficiency of a 50% increase in these markers could identify imminent progression. © 2006 Elsevier Inc. All rights reserved.
Resumo:
Background: The effects of subclinical vitamin D deficiency on bone mineral density (BMD) and bone turnover in adolescents, especially in boys, are unclear.
Objective: We aimed to investigate the relations of different stages of vitamin D status and BMD and bone turnover in a representative sample of adolescent boys and girls.
Design: BMD was measured by dual-energy X-ray absorptiometry at the nondominant forearm and dominant heel in a random sample of 12- (n = 260) and 15-y-old (n = 239) boys and 12- (n = 266) and 15-y-old (n = 250) girls. Serum 25-hydroxyvitamin D, parathyroid hormone, osteocalcin, and type I collagen cross-linked C-telopeptide were assessed by using enzyme-linked immunoassays. Relations between vitamin D status and bone health indexes were assessed by using regression modeling.
Results: Using multivariate regression to adjust for potential physical, lifestyle, and dietary confounding factors, we observed that 12-and 15-y-old girls with high vitamin D status (>= 74.1 nmol/L) had significantly greater forearm (but not heel) BMD (beta = 0.018; SE = 0.008; P < 0.05 for each age group) and lower serum parathyroid hormone concentrations and bone turnover markers than did those with low vitamin D status. These associations were evident in subjects sampled throughout the year and in winter only. There was no significant relation between vitamin D status and BMD in boys.
Conclusions: Maintaining serum 25-hydroxyvitamin D concentrations above approximate to 50 nmol/L throughout the year may be a cost-effective means of improving bone health. Increased emphasis on exploring strategies for improving vitamin D status in adolescents is needed.
Resumo:
Evidence suggests that increased fruit and vegetable (FV) intake may be associated with improved bone health, but there is limited evidence from intervention trials to support this. This 16-week study showed that increased FV consumption (five or more portions per day) does not have any effect on the markers of bone health in older adults. INTRODUCTION: Observational evidence suggests that increased FV consumption may be associated with improved bone health. However, there is lack of evidence from intervention trials to support this. This study examined the effect of increased FV consumption on bone markers among healthy, free-living older adults. METHODS: A randomised controlled trial was undertaken. Eighty-three participants aged 65-85 years, habitually consuming less than or equal to two portions of FV per day, were randomised to continue their normal diet or to consume five or more portions of FV per day for 16 weeks. FV were delivered to all participants each week, free of charge. Compliance was assessed at baseline and at 6, 12 and 16 weeks by diet histories and biomarkers of micronutrient status. Fasting serum bone markers (osteocalcin (OC) and C-terminal telopeptide of type 1 collagen (CTX)) were measured using enzyme-linked immunosorbent assay. RESULTS: Eighty-two participants completed the intervention. The five portions per day group showed a significantly greater change in daily FV consumption compared to the two portions per day group (p?
Resumo:
The reciprocal interaction between cancer cells and the tissue-specific stroma is critical for primary and metastatic tumor growth progression. Prostate cancer cells colonize preferentially bone (osteotropism), where they alter the physiological balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption, and elicit prevalently an osteoblastic response (osteoinduction). The molecular cues provided by osteoblasts for the survival and growth of bone metastatic prostate cancer cells are largely unknown. We exploited the sufficient divergence between human and mouse RNA sequences together with redefinition of highly species-specific gene arrays by computer-aided and experimental exclusion of cross-hybridizing oligonucleotide probes. This strategy allowed the dissection of the stroma (mouse) from the cancer cell (human) transcriptome in bone metastasis xenograft models of human osteoinductive prostate cancer cells (VCaP and C4-2B). As a result, we generated the osteoblastic bone metastasis-associated stroma transcriptome (OB-BMST). Subtraction of genes shared by inflammation, wound healing and desmoplastic responses, and by the tissue type-independent stroma responses to a variety of non-osteotropic and osteotropic primary cancers generated a curated gene signature ("Core" OB-BMST) putatively representing the bone marrow/bone-specific stroma response to prostate cancer-induced, osteoblastic bone metastasis. The expression pattern of three representative Core OB-BMST genes (PTN, EPHA3 and FSCN1) seems to confirm the bone specificity of this response. A robust induction of genes involved in osteogenesis and angiogenesis dominates both the OB-BMST and Core OB-BMST. This translates in an amplification of hematopoietic and, remarkably, prostate epithelial stem cell niche components that may function as a self-reinforcing bone metastatic niche providing a growth support specific for osteoinductive prostate cancer cells. The induction of this combinatorial stem cell niche is a novel mechanism that may also explain cancer cell osteotropism and local interference with hematopoiesis (myelophthisis). Accordingly, these stem cell niche components may represent innovative therapeutic targets and/or serum biomarkers in osteoblastic bone metastasis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The release of growth factors from tissue engineering scaffolds provides signals that influence the migration, differentiation, and proliferation of cells. The incorporation of a drug delivery platform that is capable of tunable release will give tissue engineers greater versatility in the direction of tissue regeneration. We have prepared a novel composite of two biomaterials with proven track records - apatite and poly(lactic-co-glycolic acid) (PLGA) – as a drug delivery platform with promising controlled release properties. These composites have been tested in the delivery of a model protein, bovine serum albumin (BSA), as well as therapeutic proteins, recombinant human bone morphogenetic protein-2 (rhBMP-2) and rhBMP-6. The controlled release strategy is based on the use of a polymer with acidic degradation products to control the dissolution of the basic apatitic component, resulting in protein release. Therefore, any parameter that affects either polymer degradation or apatite dissolution can be used to control protein release. We have modified the protein release profile systematically by varying the polymer molecular weight, polymer hydrophobicity, apatite loading, apatite particle size, and other material and processing parameters. Biologically active rhBMP-2 was released from these composite microparticles over 100 days, in contrast to conventional collagen sponge carriers, which were depleted in approximately 2 weeks. The released rhBMP-2 was able to induce elevated alkaline phosphatase and osteocalcin expression in pluripotent murine embryonic fibroblasts. To augment tissue engineering scaffolds with tunable and sustained protein release capabilities, these composite microparticles can be dispersed in the scaffolds in different combinations to obtain a superposition of the release profiles. We have loaded rhBMP-2 into composite microparticles with a fast release profile, and rhBMP-6 into slow-releasing composite microparticles. An equi-mixture of these two sets of composite particles was then injected into a collagen sponge, allowing for dual release of the proteins from the collagenous scaffold. The ability of these BMP-loaded scaffolds to induce osteoblastic differentiation in vitro and ectopic bone formation in a rat model is being investigated. We anticipate that these apatite-polymer composite microparticles can be extended to the delivery of other signalling molecules, and can be incorporated into other types of tissue engineering scaffolds.
Resumo:
Recently, the cannabinoid receptors CB1 and CB2 were shown to modulate bone formation and resorption in vivo, although little is known of the mechanisms underlying this. The effects of cannabinoids on mesenchymal stem cell (MSC) recruitment in whole bone marrow were investigated using either the fibroblastic colony-forming unit (CFU-f) assay or high-density cultures of whole bone marrow. Levels of the CB1 and CB2 receptors were assessed by flow cytometry. Treatment of CFU-f cultures with the endocannabinoid 2-arachidonylglycerol (2-AG) dose-dependently increased fibroblastic and differentiated colony formation along with colony size. The nonspecific agonists CP 55,940 and WIN 55,212 both increased colony numbers, as did the CB2 agonists BML190 and JWH015. The CB1-specific agonist ACEA had no effect, whereas the CB2 antagonist AM630 blocked the effect of the natural cannabinoid tetrahydrocannabivarin, confirming mediation via the CB2 receptor. Treatment of primary bone marrow cultures with 2-AG stimulated proliferation and collagen accumulation, whereas treatment of subcultures of MSC had no effect, suggesting that the target cell is not the MSC but an accessory cell present in bone marrow. Subcultures of MSCs were negative for CB1 and CB2 receptors as shown by flow cytometry, whereas whole bone marrow contained a small population of cells positive for both receptors. These data suggest that cannabinoids may stimulate the recruitment of MSCs from the bone marrow indirectly via an accessory cell and mediated via the CB2 receptor. This recruitment may be one mechanism responsible for the increased bone formation seen after cannabinoid treatment in vivo.
Resumo:
Diabetes Mellitus (DM) and osteoposes are chronic diseases with great socioeconomic consequences, mainly due to the late complications and consequent disabilities. The potential effects of DM on bone metabolism remain a very conroversial issue, and disagreement exists with regard to the clinical implications of diabetic osteopenia and the mechanism of its ocurrence. The issue is further complicated by the contribuicion of the especific factors, such as duration of disease an dthe degree of metabolic control. The objective of this study is to identify the osteopathy in children and adolescents with DM 1 assisted in the hospital of pediatrics, UFRN, through biochemical markers of bone and mineral metabolism and the extent of bone mineral density. The study was composed by 74 diabetics type 1 patients (DM1) of both gender and aged 6 to 20 yars. Normoglicêmic group was composed by 97 healthy subjects of both genders, which showed the same age range of DM1, in addition to same socioeconomic class. These individuals qere students from the networks of public education in the city of Natal-RN, randomly invited to paticipate in our study. Both groups DM1 and NG were divided intofour subgroups, according to the classification of tanner , T1, T2, T3, T4 for achieving a benchmark. Diabetic individuals showed up with a poor glycemic control. the group DN1 T4 showed an incresead value for total protein, albumin, urea and microalbumiuria are predictors of grumelura injury in DM1 patients . The total alkaline phosphatase activitywas kept on high levels for both groups because they are in a stature development age. For osteocalcin there were decreased levels for groups Dm1 T1, T2, and T3 when compared to their NG (s), suggesting that this decrease could be associated with reduction in the number and/or differentiation os osteoblasts thereby contributing to reducing bone formation. There were no changes in the activity of TRAP. The serum concentrations of total and ionized calcium, phosphorus and magnesium were included within the RV. It was observed that the BMD (Z- SCORE ) has always been within the RV for both groups, despite to DM1 T4. Taking all together, our results support the hypothesis that children and adolescents with type 1 DM present the risk in the long run to suffer a reduction in the bone mass, associated to poor glicemic control and disease duration. It could limit the bone growth and increase the probality of development of osteopenia, as well as other complications surch as retinopathy and renal failure
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Hyperthyroidism is the most frequent endocrine disease in old-aged cats. It is a illness provoked by the excess of circulating thyroid hormones. Hyperthyroidism causes alteration in bone metabolism with predominance of activity resorption. The evaluation of bone metabolism can be made by measuring serum and urinary markers of bone metabolism or bone mineral densitometry. Osteoblasts are responsible cells for bone formation while the osteoclasts are for resorption. In physiological situation osteoblastic and osteoclastic activities are in balance. Markers of bone formation express the osteoblastic activity and markers of the osseous resorption the osteoclástica activity. Markers of bone turnover are important in the diagnosis and prognostic of muscle-skeletal disease, as well as in the accompaniment of therapy. It is fundamental do carry on studies on the influence of feline hyperthyroidism on markers of bone formation and resorption in bone turnover to comprise pathophysiologic mechanism of bone alterations.
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)