905 resultados para Sequential injection analysis
Resumo:
PURPOSE Leakage is the most common complication of percutaneous cement augmentation of the spine. The viscosity of the polymethylmethacrylate (PMMA) cement is strongly correlated with the likelihood of cement leakage. We hypothesized that cement leakage can be reduced by sequential cement injection in a vertebroplasty model. METHODS A standardized vertebral body substitute model, consisting of aluminum oxide foams coated by acrylic cement with a preformed leakage path, simulating a ventral vein, was developed. Three injection techniques of 6 ml PMMA were assessed: injection in one single step (all-in-one), injection of 1 ml at the first and 5 ml at the second step with 1 min latency in-between (two-step), and sequential injection of 0.5 ml with 1-min latency between the sequences (sequential). Standard PMMA vertebroplasty cement was used; each injection type was tested on ten vertebral body substitute models with two possible leakage paths per model. Leakage was assessed by radiographs using a zonal graduation: intraspongious = no leakage and extracortical = leakage. RESULTS The leakage rate was significantly lower in the "sequential" technique (2/20 leakages) followed by "two-step" (15/20) and "all-in-one" (20/20) techniques (p < 0.001). The RR for a cement leakage was 10.0 times higher in the "all-in-one" compared to the "sequential" group (95 % confidence intervals 2.7-37.2; p < 0.001). CONCLUSIONS The sequential cement injection is a simple approach to minimize the risk for leakage. Taking advantage of the temperature gradient between body and room temperature, it is possible to increase the cement viscosity inside the vertebra while keeping it low in the syringe. Using sequential injection of small cement volumes, further leakage paths are blocked before further injection of the low-viscosity cement.
Resumo:
O uso de pesticidas levou ao aumento da produtividade e qualidade dos produtos agrícolas, porém o seu uso acarreta na intoxicação dos seres vivos pela ingestão gradativa de seus resíduos que contaminam o solo, a água e os alimentos. Dessa forma, há a necessidade do monitoramento constante de suas concentrações nos compartimentos ambientais. Para isto, busca-se o desenvolvimento de métodos de extração e enriquecimento de forma rápida, com baixo custo, gerando um baixo volume de resíduos, contribuindo com a química verde. Dentre estes métodos destacam-se a extração por banho de ultrassom e a extração por ponto nuvem. Após o procedimento de extração, o extrato obtido pode ser analisado por técnicas de Cromatografia a Líquido de Alta Eficiência (HPLC) e a Cromatografia por Injeção Sequencial (SIC), empregando fases estacionárias modernas, tais como as monolíticas e as partículas superficialmente porosas. O emprego de SIC com coluna monolítica (C18, 50 x 4,6 mm) e empacotada com partículas superficialmente porosas (C18, 30 x 4,6 mm, tamanho de partícula 2,7 µm) foi estudado para separação de simazina (SIM) e atrazina (ATR), e seus metabólitos, desetilatrazina (DEA), desisopropilatrazina (DIA) e hidroxiatrazina (HAT). A separação foi obtida por eluição passo-a-passo, com fases móveis compostas de acetonitrila (ACN) e tampão Acetato de Amônio/Ácido acético (NH4Ac/HAc) 2,5 mM pH 4,2. A separação na coluna monolítica foi realizada com duas fases móveis: MP1= 15:85 (v v-1) ACN:NH4Ac/HAc e MP2= 35:65 (v v-1) ACN:NH4Ac/HAc a uma vazão de 35 µL s-1. A separação na coluna com partículas superficialmente porosas foi efetivada com as fases móveis MP1= 13:87 (v v-1) ACN: NH4Ac/HAc e MP2= 35:65 (v v-1) ACN:NH4Ac/HAc à vazão de 8 µL s-1. A extração por banho de ultrassom em solo fortificado com os herbicidas (100 e 1000 µg kg-1) resultou em recuperações entre 42 e 160%. A separação de DEA, DIA, HAT, SIM e ATR empregando HPLC foi obtida por um gradiente linear de 13 a 35% para a coluna monolítica e de 10 a 35% ACN na coluna com partículas superficialmente porosas, sendo a fase aquosa constituída por tampão NH4Ac/HAc 2,5 mM pH 4,2. Em ambas as colunas a vazão foi de 1,5 mL min-1 e o tempo de análise 15 min. A extração por banho de ultrassom das amostras de solo com presença de ATR, fortificadas com concentrações de 250 a 1000 µg kg-1, proporcionou recuperações entre 40 e 86%. A presença de ATR foi confirmada por espectrometria de massas. Foram realizados estudos de fortificação com ATR e SIM em amostras de água empregando a extração por ponto nuvem com o surfactante Triton-X114. A separação empregando HPLC foi obtida por um gradiente linear de 13 a 90% de ACN para a coluna monolítica e de 10 a 90% de ACN para a coluna empacotada, sempre em tampão NH4Ac/HAc 2,5 mM pH 4,2. Em ambas as colunas a vazão foi de 1,5 mL min-1 e o tempo de análise 16 min. Fortificações entre 1 e 50 µg L-1 resultaram em recuperações entre 65 e 132%.
Resumo:
We have investigated if in a cold seep methane or sulfide is used for chemosynthetic primary production and if significant amounts of the sulfide produced by anaerobic oxidation of methane are oxidized geochemically and hence are not available for chemosynthetic production. Geochemically controlled redox reactions and biological turnover were compared in different habitats of the Håkon Mosby Mud Volcano. The center of the mud volcano is characterized by the highest fluid flow, and most primary production by the microbial community depends on oxidation of methane. The small amount of sulfide produced is oxidized geochemically with oxygen or is precipitated with dissolved iron. In the medium flow peripheral Beggiatoa habitat sulfide is largely oxidized biologically. The oxygen and nitrate supply is high enough that Beggiatoa can oxidize the sulfide completely, and chemical sulfide oxidation or precipitation is not important. An internally stored nitrate reservoir with average concentrations of 110 mmol L-1 enables the Beggiatoa to oxidize sulfide anaerobically. The pH profile indicates sequential sulfide oxidation with elemental sulfur as intermediate. Gray thiotrophic mats associated with perturbed sediments showed a high heterogeneity in sulfate turnover and high sulfide fluxes, balanced by the opposing oxygen and nitrate fluxes so that biological oxidation dominates over geochemical sulfide removal processes. The three habitats indicate substantial small-scale variability in carbon fixation pathways either through direct biological use of methane or through indirect carbon fixation of methane-derived carbon dioxide by chemolithotrophic sulfide oxidation.
Resumo:
The problem of decentralized sequential detection is studied in this thesis, where local sensors are memoryless, receive independent observations, and no feedback from the fusion center. In addition to traditional criteria of detection delay and error probability, we introduce a new constraint: the number of communications between local sensors and the fusion center. This metric is able to reflect both the cost of establishing communication links as well as overall energy consumption over time. A new formulation for communication-efficient decentralized sequential detection is proposed where the overall detection delay is minimized with constraints on both error probabilities and the communication cost. Two types of problems are investigated based on the communication-efficient formulation: decentralized hypothesis testing and decentralized change detection. In the former case, an asymptotically person-by-person optimum detection framework is developed, where the fusion center performs a sequential probability ratio test based on dependent observations. The proposed algorithm utilizes not only reported statistics from local sensors, but also the reporting times. The asymptotically relative efficiency of proposed algorithm with respect to the centralized strategy is expressed in closed form. When the probabilities of false alarm and missed detection are close to one another, a reduced-complexity algorithm is proposed based on a Poisson arrival approximation. In addition, decentralized change detection with a communication cost constraint is also investigated. A person-by-person optimum change detection algorithm is proposed, where transmissions of sensing reports are modeled as a Poisson process. The optimum threshold value is obtained through dynamic programming. An alternative method with a simpler fusion rule is also proposed, where the threshold values in the algorithm are determined by a combination of sequential detection analysis and constrained optimization. In both decentralized hypothesis testing and change detection problems, tradeoffs in parameter choices are investigated through Monte Carlo simulations.
Resumo:
A simple and rapid flow-injection spectrophotometric method is reported for the determination of dipyrone in pharmaceutical formulations. The method is based on the reaction of dipyrone with ammonium molybdate in acidic medium to produce blue molybdenum, which was detected spectrophotometrically at 620 nm. The analyte was determined in a single-line flow system. The calibration curve obtained was linear in the range of 5x10(-4) to 8x10(-3) mol L-1 for dipyrone concentration and the precision ( s r =1.7%) was satisfactory. The method proved to be selective and adequately sensitive. Application of the method to the analysis of pharmaceutical samples resulted in excellent accuracy; the percent mean recoveries were in the range 95.3%-101% and relative errors less than 5.0% for five pharmaceutical formulations were found.
Resumo:
The objective of this thesis is to explore new and improved methods for greater sample introduction efficiency and enhanced analytical performance with inductively coupled plasma optical emission spectrometry (ICP-OES). Three projects are discussed in which the capabilities and applications of ICP-OES are expanded: 1. In the first project, a conventional ultrasonic nebuliser was modified to replace the heater/condenser with an infrared heated pre-evaporation tube. In continuation from previous works with pre-evaporation, the current work investigated the effects of heating with infrared block and rope heaters on two different ICP-OES instruments. Comparisons were made between several methods and setups in which temperatures were varied. By monitoring changes to sensitivity, detection limit, precision, and robustness, and analyzing two certified reference materials, a method with improved sample introduction efficiency and comparable analytical performance to a previous method was established. 2. The second project involved improvements to a previous work in which a multimode sample introduction system (MSIS) was modified by inserting a pre-evaporation tube between the MSIS and torch. The new work focused on applying an infrared heated ceramic rope for pre-evaporation. This research was conducted in all three MSIS modes (nebulisation mode, hydride generation mode, and dual mode) and on two different ICP-OES instruments, and comparisons were made between conventional setups in terms of sensitivity, detection limit, precision, and robustness. By tracking both hydride-forming and non-hydride forming elements, the effects of heating in combination with hydride generation were probed. Finally, optimal methods were validated by analysis of two certified reference materials. 3. A final project was completed in collaboration with ZincNyx Energy Solutions. This project sought to develop a method for the overall analysis of a 12 M KOH zincate fuel, which is used in green energy backup systems. By employing various techniques including flow injection analysis and standard additions, a final procedure was formulated for the verification of K concentration, as well as the measurement of additives (Al, Fe, Mg, In, Si), corrosion products (such C from CO₃²¯), and Zn particles both in and filtered from solution. Furthermore, the effects of exposing the potassium zincate electrolyte fuel to air were assessed.
Resumo:
An attempt was made to produce sensitive and specific polyclonal antisera against the viruses causing rice tungro disease, and to assess their potential for use in simple diagnostic tests. Using a multiple, sequential injection procedure, seven batches of polyclonal antisera against rice tungro bacilliform virus (RTBV) and rice tungro spherical virus (RTSV) were produced. These were characterized for their sensitivity and specificity using ring-interface precipitin test and double antibody sandwich (DAS) ELISA. Thirty-one weeks after the first immunization, antiserum batch B6b for RTBV showed the highest ring interface titer (DEP = 1:1920). For RTSV, batches S3, S4b and S5b all had similar titres (DEP = 1:640). In DAS-ELISA, however, significant differences among purified antisera (IgG) batches were observed only at IgG dilution of 10-3. At that dilution, IgGB4b showed the greatest sensitivity, while IgGS3 showed greatest sensitivity for RTSV. When all IgG batches were tested against 11 tungro field isolates (dual RTBV-RTSV infections) at sample dilution of 1:10, IgGB4b and IgGB6b for RTBV and IgGS3 and IgGS6b for RTSV performed equally well. However, after cross adsorption with healthy plant extracts in a specially prepared healthy plant-Sepharose affinity column, only IgGB6b could be used specifically to detect RTBV in a simple tissue-print assay.
Resumo:
Biomolecules are chemical compounds found in living organisms which are the building blocks of life and perform important functions. Fluctuation from the normal concentration of these biomolecules in living system leads to several disorders. Thus the exact determination of them in human fluids is essential in the clinical point of view. High performance liquid chromatography, flow injection analysis, capillary electrophoresis, fluorimetry, spectrophotometry, electrochemical and chemiluminescence techniques were usually used for the determination of biologically important molecules. Among these techniques, electrochemical determination of biomolecules has several advantages over other methods viz., simplicity, selectivity and sensitivity. In the past two decades, electrodes modified with polymer films, self-assembled monolayers containing different functional groups and carbon paste have been used as electrochemical sensors. But in recent years, nanomaterials based electrochemical sensors play an important role in the improvement of public health because of its rapid detection, high sensitivity and specificity in clinical diagnostics. To date gold nanoparticles (AuNPs) have received arousing attention mainly due to their fascinating electronic and optical properties as a consequence of their reduced dimensions. These unique properties of AuNPs make them as an ideal candidate for the immobilization of enzymes for biosensing. Further, the electrochemical properties of AuNPs reveal that they exhibit interesting properties by enhancing the electrode conductivity, facilitating electron transfer and improving the detection limit of biomolecules. In this chapter, we summarized the different strategies used for the attachment of AuNPs on electrode surfaces and highlighted the electrochemical determination of glucose, ascorbic acid (AA), uric acid (UA) and dopamine derivatives using the AuNPs modified electrodes.
Resumo:
Background Despite potential benefits, some patients decide not to use their custom-made orthopaedic shoes (OS). Factors are known in the domains ‘usability’, ‘communication and service’, and ‘opinion of others’ that influence a patient’s decision to use OS. However, the interplay between these factors has never been investigated. The aim of this study was to explore the interplay between factors concerning OS, and the influences thereof on a patient’s decision to use OS. Methods A mixed-methods design was used, combining qualitative and quantitative data by means of sequential data analysis and triangulation. Priority was given to the qualitative part. Qualitative data was gathered with a semi-structured interview covering the three domains. Data was analysed using the framework approach. Quantitative data concerned the interplay between factors and determining a rank-order for the importance of factors of ‘usability’. Results A patient’s decision to use OS was influenced by various factors indicated as being important and by acceptance of their OS. Factors of ‘usability’ were more important than factors of ‘communication’; the ‘opinion of others’ was of limited importance. An improvement of walking was indicated as the most important factor of ‘usability’. The importance of other factors (cosmetic appearance and ease of use) was determined by reaching a compromise between these factors and an improvement of walking. Conclusions A patient’s decision to use OS is influenced by various factors indicated as being important and by acceptance of their OS. An improvement of walking is the most important factor of ‘usability’, the importance of other factors (cosmetic appearance and ease of use) is determined by reaching compromises between these factors and an improvement of walking. Communication is essential to gain insight in a patient’s acceptance and in the compromises they are willing to reach. This makes communication the key for clinicians to influence a patient’s decision to use OS.
Resumo:
[ES] El objetivo de esta investigación es evaluar la actividad de saltar de un grupo escolar natural de 15 criaturas entre los dos y los cuatro años en el contexto de la Práctica Psicomotriz Aucouturier. La perspectiva teórica adoptada ha sido la teoría psicogenética y dialéctica de Henri Wallon. Según ésta, saltar es un automatismo natural regulado por el aparato funcional del equilibrio que se aprende en la primera infancia. La metodología utilizada ha sido la observacional. El diseño es nomotético, de seguimiento y multidimensional, y el instrumento de observación es el formato de campo "el salto en psicomotricidad durante el tercer año de vida". Los resultados, obtenidos mediante la aplicación prospectiva del análisis secuencial de retardos, informan sobre la adquisición del automatismo o proceso de aprendizaje, sobre el contenido del mismo o manejo del vértigo y sobre su resultante conjunta o tipos básicos de salto en psicomotricidad, sus características y su evolución.
Resumo:
A flow injection system for the determination of organophosphate and carbamate pesticides is described. A sensitive fluorescence probe was synthesized and used as the pH indicator to detect the inhibition of the enzyme acetylcholinesterase (ACNE). The percentage inhibition of enzyme activity is correlated to the pesticide concentration. Several parameters influencing the performance of the system are discussed. The detection limits of 3.5, 50, 12 and 25 mug/l for carbofuran, carbaryl, paraoxon and dichlorvos, in pure water, respectively were achieved with an incubation time of 10 min. A complete cycle of analysis, including incubation time, took 14 min. The detection system has been applied to the determination of carbofuran in spiked vegetable juices (Chinese cabbage and cole), achieving recovery values between 93.2 and 107% for Chinese cabbage juice and 108 and 118% for cole juice at the different concentration levels assayed. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A slab optical waveguide (SOWG) has been used for study of adsorption of both methylene blue (MB) and new methylene blue (NMB) in liquid-solid interface. Adsorption characteristics of MB and NMB on both bare SOWG and silanized SOWG by octadecyltrichlorosilane (ODS) were compared. The simultaneous determinations of both MB and NMB were explored by flow injection SOWG spectrophotometric analysis and artificial neural networks (ANNs) for the first time. Concentrations of MB and NMB were estimated simultaneously with the ANNs. Results obtained with SOWG were compared with those got by conventional UV-visible spectrophotometry. (C) 2003 Elsevier Science B.V All rights reserved.
Resumo:
Phenothiazine drugs, chlorpromazine hydrochloride (CPZ) and promethazine hydrochloride (PMZ), were determined with Ru(bpy)(3)(2+) electrochemiluminescene by the capillary electrophoresis (CE-ECL). It was found that both CPZ and PMZ could produce an intermediate that acted as coreactants to react with Ru(bpy)(3)(2+) to produce excited states which were capable of emitting light. This CE-ECL detection method had high sensitivity, good selectivity and reproducibility for CPZ and PMZ determination.
Resumo:
Laccase has been immobilized on the carbon nanotubes modified glassy carbon electrode surface by adsorption. As-prepared laccase retains good electrocatalytic activity to oxygen reduction by using 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) as the mediator. It can be used as a biosensor for the determination of catechol with broad linear range.
Resumo:
A new kind of bismuth film modified electrode to sensitively detect trace metal ions based on incorporating highly conductive ionic liquids 1-butyl-3-methyl-imidazolium hexafluorophosphate (BMIMPF6) in solid matrices at glassy carbon (GC) was investigated. Poly(sodium 4-styrenesulfonate) (PSS), silica, and Nafion were selected as the solid matrices. The electrochemical properties of the mixed films modified GC were evaluated. The electron transfer rate of Fe(CN)(6)(4-)/Fe(CN)(6)(3-) can be effectively improved at the PSS-BMIMPF6 modified GC.