972 resultados para Sequence Analysis, DNA
Resumo:
Two L-amino acid oxidases (LAAOs) were identified by random sequencing of cDNA libraries from the venom glands of Bothrops moojeni (BmooLAAO) and Bothrops jararacussu (Bjussu LAAO). Phylogenetic analysis involving other SV-LAAOs showed sequence identities within the range 83-87% being closely related to those from Agkistrodon and Trimeresurus. Molecular modeling experiments indicated the FAD-binding, substrate-binding, and helical domains of Bmoo and Bjussu LAAOs. The RMS deviations obtained by the superposition of those domains and that from Calloselasma rhodostoma LAAO crystal structure confirm the high degree of structural similarity between these enzymes. Purified BjussuLAAO-I and BmooLAAO-I exhibited antiprotozoal activities which were demonstrated to be hydrogen-peroxide mediated. This is the first report on the isolation and identification of cDNAs encoding LAAOs from Bothrops venom. The findings here reported contribute to the overall structural elucidation of SV-LAAOs and will advance the understanding on their mode of action. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Partial cDNA sequences of myosin V from rainbow trout Oncorhynchus mykiss were analyzed and showed high similarity to MVa from other vertebrates. Phylogenetic analysis has shown that events resulting in the formation of paralogous copies of myosin Va, Vb, and Vc occurred before the divergence of vertebrates into different classes. Expression analysis of myosin Va, Vb, and Vc in different O. mykiss tissues revealed MVa exclusively expressed in hypophysis and brain whereas Vb and Vc were expressed in practically all tissues analyzed. The nucleotide sequence for myosin V was explored in a fish species for the first time and these results represent an important start in understanding the organization, evolution, and expression of myosins in early vertebrates. The data presented here represent contributions to the knowledge of rainbow trout genome. A better understanding of this economically important species could assist in development of improved strains of this fish for aquaculture.
Identification of bacteria in endodontic infections by sequence analysis of 16S rDNA clone libraries
Resumo:
A significant proportion of oral bacteria are unable to undergo cultivation by existing techniques. In this regard, the microbiota from root canals still requires complementary characterization. The present study aimed at the identification of bacteria by sequence analysis of 16S rDNA clone libraries from seven endodontically infected teeth. Samples were collected from the root canals, subjected to the PCR with universal 16S rDNA primers, cloned and partially sequenced. Clones were clustered into groups of closely related sequences (phylotypes) and identification to the species level was performed by comparative analysis with the GenBank, EMBL and DDBJ databases, according to a 98 % minimum identity. All samples were positive for bacteria and the number of phylotypes detected per subject varied from two to 14. The majority of taxa (65(.)2 %) belonged to the phylum Firmicutes of the Gram-positive bacteria, followed by Proteobacteria (10(.)9 %), Spirochaetes (4(.)3 %), Bacteroidetes (6(.)5 %), Actinobacteria (2(.)2 %) and Deferribacteres (2(.)2 %). A total of 46 distinct taxonomic units was identified. Four clones with low similarity to sequences previously deposited in the databases were sequenced to nearly full extent and were classified taxonomically as novel representatives of the order Clostridiales, including a putative novel species of Mogibacterium. The identification of novel phylotypes associated with endodontic infections suggests that the endodontium may still harbour a relevant proportion of uncharacterized taxa.
Resumo:
In this study, we report the cloning and nucleotide sequence of PCR-generated 5S rDNA from the Tilapiine cichlid fish, Oreochromis niloticus. Two types of 5S rDNA were detected that differed by insertions and/or deletions and base substitutions within the non-transcribed spacer (NTS). Two 5S rDNA loci were observed by fluorescent in situ hybridization (FISH) in metaphase spreads of tilapia chromosomes. FISH using an 18S rDNA probe and silver nitrate sequential staining of 5S-FISH slides showed three 18S rDNA loci that are not syntenic to the 5S rDNA loci.
Resumo:
Genomic sequence comparison across species has enabled the elucidation of important coding and regulatory sequences encoded within DNA. Of particular interest are the noncoding regulatory sequences, which influence gene transcriptional and posttranscriptional processes. A phylogenetic footprinting strategy was employed to identify noncoding conservation patterns of 39 human and bovine orthologous genes. Seventy-three conserved noncoding sequences were identified that shared greater than 70% identity over at least 100 bp. Thirteen of these conserved sequences were also identified in the mouse genome. Evolutionary conservation of noncoding sequences across diverse species may have functional significance, and these conserved sequences may be good candidates for regulatory elements.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Members of the genus Malassezia are lipophilic basidiomycetous yeasts, which are part of the normal cutaneous microbiota of humans and other warm-blooded animals. Currently, this genus consists of 14 species that have been characterized by phenetic and molecular methods. Although several molecular methods have been used to identify and/or differentiate Malassezia species, the sequencing of the rRNA genes and the chitin synthase-2 gene (CHS2) are the most widely employed. There is little information about the beta-tubulin gene in the genus Malassezia, a gene has been used for the analysis of complex species groups. The aim of the present study was to sequence a fragment of the beta-tubulin gene of Malassezia species and analyze their phylogenetic relationship using a multilocus sequence approach based on two rRNA genes (ITS including 5.8S rRNA and D1/D2 region of 26S rRNA) together with two protein encoding genes (CHS2 and beta-tubulin). The phylogenetic study of the partial beta-tubulin gene sequences indicated that this molecular marker can be used to assess diversity and identify new species. The multilocus sequence analysis of the four loci provides robust support to delineate species at the terminal nodes and could help to estimate divergence times for the origin and diversification of Malassezia species.
Resumo:
Mycobacterium abscessus, Mycobacterium bolletii, and Mycobacterium massiliense (Mycobacterium abscessus sensu lato) are closely related species that currently are identified by the sequencing of the rpoB gene. However, recent studies show that rpoB sequencing alone is insufficient to discriminate between these species, and some authors have questioned their current taxonomic classification. We studied here a large collection of M. abscessus (sensu lato) strains by partial rpoB sequencing (752 bp) and multilocus sequence analysis (MLSA). The final MLSA scheme developed was based on the partial sequences of eight housekeeping genes: argH, cya, glpK, gnd, murC, pgm, pta, and purH. The strains studied included the three type strains (M. abscessus CIP 104536(T), M. massiliense CIP 108297(T), and M. bolletii CIP 108541(T)) and 120 isolates recovered between 1997 and 2007 in France, Germany, Switzerland, and Brazil. The rpoB phylogenetic tree confirmed the existence of three main clusters, each comprising the type strain of one species. However, divergence values between the M. massiliense and M. bolletii clusters all were below 3% and between the M. abscessus and M. massiliense clusters were from 2.66 to 3.59%. The tree produced using the concatenated MLSA gene sequences (4,071 bp) also showed three main clusters, each comprising the type strain of one species. The M. abscessus cluster had a bootstrap value of 100% and was mostly compact. Bootstrap values for the M. massiliense and M. bolletii branches were much lower (71 and 61%, respectively), with the M. massiliense cluster having a fuzzy aspect. Mean (range) divergence values were 2.17% (1.13 to 2.58%) between the M. abscessus and M. massiliense clusters, 2.37% (1.5 to 2.85%) between the M. abscessus and M. bolletii clusters, and 2.28% (0.86 to 2.68%) between the M. massiliense and M. bolletii clusters. Adding the rpoB sequence to the MLSA-concatenated sequence (total sequence, 4,823 bp) had little effect on the clustering of strains. We found 10/120 (8.3%) isolates for which the concatenated MLSA gene sequence and rpoB sequence were discordant (e.g., M. massiliense MLSA sequence and M. abscessus rpoB sequence), suggesting the intergroup lateral transfers of rpoB. In conclusion, our study strongly supports the recent proposal that M. abscessus, M. massiliense, and M. bolletii should constitute a single species. Our findings also indicate that there has been a horizontal transfer of rpoB sequences between these subgroups, precluding the use of rpoB sequencing alone for the accurate identification of the two proposed M. abscessus subspecies.
Resumo:
A porcine BAC clone harboring the tightly linked IFNAR1 and IFNGR2 genes was identified by comparative analysis of the publicly available porcine BAC end sequences. The complete 168,835 bp insert sequence of this clone was determined. Sequence comparisons of the genomic sequence with EST sequences from public databases were performed and allowed a detailed annotation of the IFNAR1 and IFNGR2 genes. The analyzed genes showed a conserved genomic organization with their known mammalian orthologs, however the sequence conservation of these genes across species was relatively low. In addition to the IFNAR1 and IFNGR2 genes, which were completely sequenced, the analyzed BAC clone also contained parts of an orphan gene encoding a putative transmembrane protein (TMEM50B). In contrast to the IFNAR1 and IFNGR2 genes the sequence conservation of the TMEM50B gene across different mammalian species was extremely high.
Resumo:
Defensins are a family of evolutionary ancient antimicrobial peptides consisting of three sub-families: alpha-, beta- and theta-defensins. This investigation was focused on the genomic characterization of equine beta-defensins and the investigation of the potential clustering of beta-defensin genes in the equine genome. Six genomic BAC clones were isolated from the CHORI-241 library and one of these was mapped by FISH to ECA 27q17. This location was confirmed by RH-mapping. The contiguous 212 kb sequence of this clone was determined. Sequence analysis revealed the identification of ten pseudogenes and nine genes, six of which were highly homologous to human beta-defensin DEFB4. Clustering of the beta-defensin genes was confirmed and the order of the genes on the analyzed BAC was related to the corresponding defensin cluster on HSA 8. The knowledge about the sequence and the genomic structure of the equine beta-defensin genes will improve the classification of different paralogous defensin genes and is a prerequisite for subsequent functional studies. Additionally, the first alpha-defensin-like sequence outside the groups of primates, lagomorphs and rodents (glires) was identified.
Resumo:
Multilocus sequence analysis (MLSA) based on recN, rpoA and thdF genes was done on more than 30 species of the family Enterobacteriaceae with a focus on Cronobacter and the related genus Enterobacter. The sequences provide valuable data for phylogenetic, taxonomic and diagnostic purposes. Phylogenetic analysis showed that the genus Cronobacter forms a homogenous cluster related to recently described species of Enterobacter, but distant to other species of this genus. Combining sequence information on all three genes is highly representative for the species' %GC-content used as taxonomic marker. Sequence similarity of the three genes and even of recN alone can be used to extrapolate genetic similarities between species of Enterobacteriaceae. Finally, the rpoA gene sequence, which is the easiest one to determine, provides a powerful diagnostic tool to identify and differentiate species of this family. The comparative analysis gives important insights into the phylogeny and genetic relatedness of the family Enterobacteriaceae and will serve as a basis for further studies and clarifications on the taxonomy of this large and heterogeneous family.
Resumo:
Cloud computing provides a promising solution to the genomics data deluge problem resulting from the advent of next-generation sequencing (NGS) technology. Based on the concepts of “resources-on-demand” and “pay-as-you-go”, scientists with no or limited infrastructure can have access to scalable and cost-effective computational resources. However, the large size of NGS data causes a significant data transfer latency from the client’s site to the cloud, which presents a bottleneck for using cloud computing services. In this paper, we provide a streaming-based scheme to overcome this problem, where the NGS data is processed while being transferred to the cloud. Our scheme targets the wide class of NGS data analysis tasks, where the NGS sequences can be processed independently from one another. We also provide the elastream package that supports the use of this scheme with individual analysis programs or with workflow systems. Experiments presented in this paper show that our solution mitigates the effect of data transfer latency and saves both time and cost of computation.
Resumo:
BACKGROUND: The Enterococcus faecium genogroup, referred to as clonal complex 17 (CC17), seems to possess multiple determinants that increase its ability to survive and cause disease in nosocomial environments. METHODS: Using 53 clinical and geographically diverse US E. faecium isolates dating from 1971 to 1994, we determined the multilocus sequence type; the presence of 16 putative virulence genes (hyl(Efm), esp(Efm), and fms genes); resistance to ampicillin (AMP) and vancomycin (VAN); and high-level resistance to gentamicin and streptomycin. RESULTS: Overall, 16 different sequence types (STs), mostly CC17 isolates, were identified in 9 different regions of the United States. The earliest CC17 isolates were part of an outbreak that occurred in 1982 in Richmond, Virginia. The characteristics of CC17 isolates included increases in resistance to AMP, the presence of hyl(Efm) and esp(Efm), emergence of resistance to VAN, and the presence of at least 13 of 14 fms genes. Eight of 41 of the early isolates with resistance to AMP, however, were not in CC17. CONCLUSIONS: Although not all early US AMP isolates were clonally related, E. faecium CC17 isolates have been circulating in the United States since at least 1982 and appear to have progressively acquired additional virulence and antibiotic resistance determinants, perhaps explaining the recent success of this species in the hospital environment.