830 resultados para Sensing devices
Resumo:
Semiconductor Optical Amplifiers (SOAs) have mainly found application in optical telecommunication networks for optical signal regeneration, wavelength switching or wavelength conversion. The objective of this paper is to report the use of semiconductor optical amplifiers for optical sensing taking into account their optical bistable properties. As it was previously reported, some semiconductor optical amplifiers, including Fabry-Perot and Distributed-Feedback Semiconductor Optical Amplifiers (FPSOAs and DFBSOAs), may exhibit optical bistability. The characteristics of the attained optical bistability in this kind of devices are strongly dependent on different parameters including wavelength, temperature or applied bias current and small variations lead to a change on their bistable properties. As in previous analyses for Fabry-Perot and DFB SOAs, the variations of these parameters and their possible application for optical sensing are reported in this paper for the case of the Vertical-Cavity Semiconductor Optical Amplifier (VCSOA). When using a VCSOA, the input power needed for the appearance of optical bistability is one order of magnitude lower than that needed in edge-emitting devices. This feature, added to the low manufacturing costs of VCSOAs and the ease to integrate them in 2-D arrays, makes the VCSOA a very promising device for its potential use in optical sensing applications.
Resumo:
Los sectores de detección biológica demandan continuamente técnicas de análisis y diagnóstico más eficientes y precisas para identificar enfermedades y desarrollar nuevos medicamentos. Actualmente se considera que hay una gran necesidad de desarrollar herramientas de diagnóstico capaces de asegurar sensibilidad, rapidez, sencillez y asequibilidad para aplicaciones en sectores como la salud, la alimentación, el medioambiente o la seguridad. En el ámbito clínico se necesitan profundos avances tecnológicos capaces de ofrecer análisis rápidos, exactos, fiables y asequibles en coste y que tengan como consecuencia la mejora clínica y económica a partir de un diagnóstico eficiente. En concreto, hay un interés creciente por la descentralización del diagnóstico clínico mediante plataformas de detección cercanas al usuario final, denominadas POCs (Point Of Care devices). La utilización de POCs (referidas al diagnóstico cercano al usuario final o fuera del laboratorio de análisis clínico), mediante detección in vitro (IVD), será extremadamente útil en centros de salud, clínicas o unidades hospitalarias, entornos laborales o incluso en el hogar. Por otra parte, el desarrollo de la genómica, proteómica y otras tecnologías conocidas como “omics” (sufijo en inglés para referirse, por ejemplo, a genomics, transcriptomics, proteomics, metabolomics, lipidomics) está incrementando la demanda de nuevas tecnologías mucho más avanzadas con una clara orientación hacia la medicina personalizada y la necesidad de hacer frente a cambios en los tratamientos en el caso de enfermedades complejas. Desde hace poco tiempo se han definido las Celdas Biofónicas (BICELLs) como una metodología novedosa para la detección de agentes biológicos que ofrecen una serie de características que las hacen interesantes como son: Capacidad de multiplexación, alta sensibilidad, posibilidad de medir en gota, compatible con otras tecnologías. En este trabajo se hace un estudio y optimización sobre diferentes tipos de BICELLs y se valoran una serie de figuras de merito a tener en cuenta desde el punto de vista del lector óptico a emplear.
Innovative analytical strategies for the development of sensor devices and mass spectrometry methods
Resumo:
Il lavoro presentato in questa tesi di Dottorato è incentrato sullo sviluppo di strategie analitiche innovative basate sulla sensoristica e su tecniche di spettrometria di massa in ambito biologico e della sicurezza alimentare. Il primo capitolo tratta lo studio di aspetti metodologici ed applicativi di procedure sensoristiche per l’identificazione e la determinazione di biomarkers associati alla malattia celiaca. In tale ambito, sono stati sviluppati due immunosensori, uno a trasduzione piezoelettrica e uno a trasduzione amperometrica, per la rivelazione di anticorpi anti-transglutaminasi tissutale associati a questa malattia. L’innovazione di questi dispositivi riguarda l’immobilizzazione dell’enzima tTG nella conformazione aperta (Open-tTG), che è stato dimostrato essere quella principalmente coinvolta nella patogenesi. Sulla base dei risultati ottenuti, entrambi i sistemi sviluppati si sono dimostrati una valida alternativa ai test di screening attualmente in uso per la diagnosi della celiachia. Rimanendo sempre nel contesto della malattia celiaca, ulteriore ricerca oggetto di questa tesi di Dottorato, ha riguardato lo sviluppo di metodi affidabili per il controllo di prodotti “gluten-free”. Il secondo capitolo tratta lo sviluppo di un metodo di spettrometria di massa e di un immunosensore competitivo per la rivelazione di prolammine in alimenti “gluten-free”. E’ stato sviluppato un metodo LC-ESI-MS/MS basato su un’analisi target con modalità di acquisizione del segnale selected reaction monitoring per l’identificazione di glutine in diversi cereali potenzialmente tossici per i celiaci. Inoltre ci si è focalizzati su un immunosensore competitivo per la rivelazione di gliadina, come metodo di screening rapido di farine. Entrambi i sistemi sono stati ottimizzati impiegando miscele di farina di riso addizionata di gliadina, avenine, ordeine e secaline nel caso del sistema LC-MS/MS e con sola gliadina nel caso del sensore. Infine i sistemi analitici sono stati validati analizzando sia materie prime (farine) che alimenti (biscotti, pasta, pane, etc.). L’approccio sviluppato in spettrometria di massa apre la strada alla possibilità di sviluppare un test di screening multiplo per la valutazione della sicurezza di prodotti dichiarati “gluten-free”, mentre ulteriori studi dovranno essere svolti per ricercare condizioni di estrazione compatibili con l’immunosaggio competitivo, per ora applicabile solo all’analisi di farine estratte con etanolo. Terzo capitolo di questa tesi riguarda lo sviluppo di nuovi metodi per la rivelazione di HPV, Chlamydia e Gonorrhoeae in fluidi biologici. Si è scelto un substrato costituito da strips di carta in quanto possono costituire una valida piattaforma di rivelazione, offrendo vantaggi grazie al basso costo, alla possibilità di generare dispositivi portatili e di poter visualizzare il risultato visivamente senza la necessità di strumentazioni. La metodologia sviluppata è molto semplice, non prevede l’uso di strumentazione complessa e si basa sull’uso della isothermal rolling-circle amplification per l’amplificazione del target. Inoltre, di fondamentale importanza, è l’utilizzo di nanoparticelle colorate che, essendo state funzionalizzate con una sequenza di DNA complementare al target amplificato derivante dalla RCA, ne permettono la rivelazione a occhio nudo mediante l’uso di filtri di carta. Queste strips sono state testate su campioni reali permettendo una discriminazione tra campioni positivi e negativi in tempi rapidi (10-15 minuti), aprendo una nuova via verso nuovi test altamente competitivi con quelli attualmente sul mercato.
Resumo:
New low cost sensors and open free libraries for 3D image processing are making important advances in robot vision applications possible, such as three-dimensional object recognition, semantic mapping, navigation and localization of robots, human detection and/or gesture recognition for human-machine interaction. In this paper, a novel method for recognizing and tracking the fingers of a human hand is presented. This method is based on point clouds from range images captured by a RGBD sensor. It works in real time and it does not require visual marks, camera calibration or previous knowledge of the environment. Moreover, it works successfully even when multiple objects appear in the scene or when the ambient light is changed. Furthermore, this method was designed to develop a human interface to control domestic or industrial devices, remotely. In this paper, the method was tested by operating a robotic hand. Firstly, the human hand was recognized and the fingers were detected. Secondly, the movement of the fingers was analysed and mapped to be imitated by a robotic hand.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Advanced UV inscribed fibre grating structures and applications in optical sensing and laser systems
Resumo:
This thesis presents detailed investigation of UV inscribed fibre grating based devices and novel developments in the applications of such devices in optical sensing and fibre laser systems. The major contribution of this PhD programme includes the systematic study on fabrication, spectral characteristics and applications of different types of UV written in-fibre gratings such as Type I and IA Fibre Bragg Gratings (FBGs), Chirped Fibre Bragg Gratings (CFBGs) and Tilted Fibre Gratings (TFGs) with small, large and 45º tilted structures inscribed in normal silica fibre. Three fabrication techniques including holographic, phase-mask and blank beam exposure scanning, which were employed to fabricate a range of gratings in standard single mode fibre, are fully discussed. The thesis reports the creation of smart structures with self-sensing capability by embedding FBG-array sensors in Al matrix composite. In another part of this study, we have demonstrated the particular significant improvements made in sensitising standard FBGs to the chemical surrounding medium by inducing microstructure to the grating by femtosecond (fs) patterning assisted chemical etching technique. Also, a major work is presented for the investigation on the structures, inscription methods and spectral Polarisation Dependent Loss (PDL) and thermal characteristics of different angle TFGs. Finally, a very novel application in realising stable single polarisation and multiwavelength switchable Erbium Doped Fibre Lasers (EDFLs) using intracavity polarisation selective filters based on TFG devices with tilted structures at small, large and exact 45° angles forms another important contribution of this thesis.
Resumo:
This thesis has focused on three key areas of interest for femtosecond micromachining and inscription. The first area is micromachining where the work has focused on the ability to process highly repeatable, high precision machining with often extremely complex geometrical structures with little or no damage. High aspect ratio features have been demonstrated in transparent materials, metals and ceramics. Etch depth control was demonstrated especially in the work on phase mask fabrication. Practical chemical sensing and microfluidic devices were also fabricated to demonstrate the capability of the techniques developed during this work. The second area is femtosecond inscription. Here, the work has utilised the non-linear absorption mechanisms associated with femtosecond pulse-material interactions to create highly localised refractive index changes in transparent materials to create complex 3D structures. The techniques employed were then utilised in the fabrication of Phase masks and Optical Coherence Tomography (OCT) phantom calibration artefacts both of which show the potential to fill voids in the development of the fields. This especially the case for the OCT phantoms where there exists no previous artefacts of known shape, allowing for the initial specification of parameters associated with the quality of OCT machines that are being taken up across the world in industry and research. Finally the third area of focus was the combination of all of the techniques developed through work in planar samples to create a range of artefacts in optical fibres. The development of techniques and methods for compensating for the geometrical complexities associated with working with the cylindrical samples with varying refractive indices allowed for fundamental inscription parameters to be examined, structures for use as power monitors and polarisers with the optical fibres and finally the combination of femtosecond inscription and ablation techniques to create a magnetic field sensor with an optical fibre coated in Terfenol-D with directional capability. Through the development of understanding, practical techniques and equipment the work presented here demonstrates several novel pieces of research in the field of femtosecond micromachining and inscription that has provided a broad range of related fields with practical devices that were previously unavailable or that would take great cost and time to facilitate.
Resumo:
A single long-period fibre grating was written in a biconical fibre taper made from standard communications step-index optical fibre, resulting in an interferometric fibre sensor device that provided a resolution of 1×10–4 for refractive indices in the range of 1.30 to 1.34, suggesting that these devices may be suitable for use with aqueous solutions.
Resumo:
The fabrication and characterization of long-period gratings (LPGs) in fiber tapers is presented alongside supporting theory. The devices possess a high sensitivity to the index of aqueous solutions due to an observed spectral bifurcation effect, yielding a limiting index resolution of ±8.5×10-5 for solutions with an index in the range 1.330-1.335.
Resumo:
This thesis describes the study of various grating based optical fibre sensors for applications in refractive index sensing. The sensitivity of these sensors has been studied and in some cases enhanced using novel techniques. The major areas of development are as follows. The sensitivity of long period gratings (LPGs) to surrounding medium refractive index (SRI) for various periods was investigated. The most sensitive period of LPG was found to be around 160 µm and this was due to the core mode coupling to a single cladding mode but phase matching at two wavelength locations, creating two attenuation peaks, close to the waveguide dispersion turning point. Large angle tilted fibre gratings (TFGs) have similar behaviour to LPGs, in that they couple to the co-propagating cladding modes. The tilted structure of the index modulation within the core of the fibre gives rise to a polarisation dependency, differing the large angle TFG from a LPG. Since the large angle TFG couple to the cladding mode they are SRI sensitive, the sensitivity to SRI can be further increased through cladding etching using HF acid. The thinning of the cladding layer caused a reordering of the cladding modes and shifted to more SRI sensitive cladding modes as the investigation discovered. In a SRI range of 1.36 to 1.40 a sensitivity of 506.9 nm/URI was achieved for the etched large angle TFG, which is greater than the dual resonance LPG. UV inscribed LPGs were coated with sol-gel materials with high RIs. The high RI of the coating caused an increase in cladding mode effective index which in turn caused an increase in the LPG sensitivity to SRI. LPGs of various periods of LPG were coated with sol-gel TiO2 and the optimal thickness was found to vary for each period. By coating of the already highly SRI sensitive 160µm period LPG (which is a dual resonance) with a sol-gel TiO2, the SRI sensitivity was further increased with a peak value of 1458 nm/URI, which was an almost 3 fold increase compared to the uncoated LPG. LPGs were also inscribed using a femtosecond laser which produced a highly focused index change which was no uniform throughout the core of the optical fibre. The inscription technique gave rise to a large polarisation sensitivity and the ability to couple to multiple azimuthal cladding mode sets, not seen with uniform UV inscribed gratings. Through coupling of the core mode to multiple sets of cladding modes, attenuation peaks with opposite wavelength shifts for increasing SRI was observed. Through combining this opposite wavelength shifts, a SRI sensitivity was achieved greater than any single observed attenuations peak. The maximum SRI achieved was 1680 nm/URI for a femtosecond inscribed LPG of period 400 µm. Three different types of surface plasmon resonance (SPR) sensors with a multilayer metal top coating were investigated in D shape optical fibre. The sensors could be separated into two types, utilized a pre UV inscribed tilted Bragg grating and the other employed a post UV exposure to generate surface relief grating structure. This surface perturbation aided the out coupling of light from the core but also changed the sensing mechanism from SPR to localised surface plasmon resonance (LSPR). This greatly increased the SRI sensitivity, compared to the SPR sensors; with the gold coated top layer surface relief sensor producing the largest SRI sensitivity of 2111.5nm/URI was achieved. While, the platinum and silver coated top layer surface relief sensors also gave high SRI sensitivities but also the ability to produce resonances in air (not previously seen with the SPR sensors). These properties were employed in two applications. The silver and platinum surface relief devices were used as gas sensors and were shown to be capable of detecting the minute RI change of different gases. The calculated maximum sensitivities produced were 1882.1dB/URI and 1493.5nm/URI for silver and platinum, respectively. Using a DFB laser and power meter a cheap alternative approach was investigated which showed the ability of the sensors to distinguish between different gases and flow rates of those gases. The gold surface relief sensor was coated in a with a bio compound called an aptamer and it was able to detect various concentrations of a biological compound called Thrombin, ranging from 1mM to as low as 10fM. A solution of 2M NaCl was found to give the best stripping results for Thrombin from the aptamer and showed the reusability of the sensor. The association and disassociation constants were calculated to be 1.0638×106Ms-1 and 0.2482s-1, respectively, showing the high affinity of the Aptamer to thrombin. This supports existing working stating that aptamers could be alternative to enzymes for chemical detection and also helps to explain the low detection limit of the gold surface relief sensor.
Resumo:
The underlying work to this thesis focused on the exploitation and investigation of photosensitivity mechanisms in optical fibres and planar waveguides for the fabrication of advanced integrated optical devices for telecoms and sensing applications. One major scope is the improvement of grating fabrication specifications by introducing new writing techniques and the use of advanced characterisation methods for grating testing. For the first time the polarisation control method for advanced grating fabrication has successfully been converted to apodised planar waveguide fabrication and the development of a holographic method for the inscription of chirped gratings at arbitrary wavelength is presented. The latter resulted in the fabrication of gratings for pulse-width suppression and wavelength selection in diode lasers. In co-operation with research partners a number of samples were tested using optical frequency domain and optical low coherence reflectometry for a better insight into the limitations of grating writing techniques. Using a variety of different fabrication methods, custom apodised and chirped fibre Bragg gratings were written for the use as filter elements for multiplexer-demultiplexer devices, as well as for short pulse generation and wavelength selection in telecommunication transmission systems. Long period grating based devices in standard, speciality and tapered fibres are presented, showing great potential for multi-parameter sensing. One particular scope is the development of vectorial curvature and refractive index sensors with potential for medical, chemical and biological sensing. In addition the design of an optically tunable Mach-Zehnder based multiwavelength filter is introduced. The discovery of a Type IA grating type through overexposure of hydrogen loaded standard and Boron-Germanium co-doped fibres strengthened the assumption of UV-photosensitivity being a highly non-linear process. Gratings of this type show a significantly lower thermal sensitivity compared to standard gratings, which makes them useful for sensing applications. An Oxford Lasers copper-vapour laser operating at 255 nm in pulsed mode was used for their inscription, in contrast to previous work using CW-Argon-Ion lasers and contributing to differences in the processes of the photorefractive index change
Resumo:
In this work, a point by point method for the inscription of fibre Bragg gratings using a tightly focused infrared femtosecond laser is implemented for the first time. Fibre Bragg gratings are wavelength-selective, retro-reflectors which have become a key component in optical communications as well as offering great potential as a sensing tool. Standard methods of fabrication are based on UV inscription in fibre with a photosensitive core. Despite the high quality of the gratings, a number of disadvantages are associated with UV inscription, in particular, the requirements of a photosensitive fibre, the low thermal stability and the need to remove the protective coating prior to inscription. By combining the great flexibility offered by the point by point method with the advantages inherent to inscription by an infrared femtosecond laser, the previous disadvantages are overcome. The method here introduced, allows a fast inscription process at a rate of ~1mm/s, gratings of lengths between 1cm and 2cm exhibiting reflections in excess of 99%. Physical dimensions of these gratings differ significantly from those inscribed by other methods, in this case the grating is confined to a fraction of the cross section of the core, leading to strong and controllable birefringence and polarisation dependent loss. Finally, an investigation of the potential for their exploitation towards novel applications is carried out, devices such as directional bend sensors inscribed in single-mode fibre, superimposed but non-overlapping gratings, and single-mode, single-polarisation fibre lasers, were designed, fabricated and characterised based on point by point femtosecond inscription.
Resumo:
A series of surface plasmonic fibre devices were fabricated using multiple coatings deposited on a lapped section of a single mode fibre. Coupling from the guided mode to surface plasmons was promoted following UV laser irradiation of the coated region through a phase mask, which generated a surface relief grating structure. The devices showed high spectral sensitivities and strong coupling for low refractive indices as compared to other grating-type fibre devices. The plasmonic devices were used to detect the variation in the refractive indices of alkane gases with measured wavelength and coupling sensitivity to index of 3400 nm RIU-1 and 8300 dB RIU-1, respectively. As a demonstration of the performance of these gas sensors, a minimum concentration of 2% by volume of butane in ethane was achieved.
Resumo:
This thesis presents the potential sensing applications of fibre Bragg gratings in polymer optical fibres. Fibre Bragg gratings are fabricated in different kinds of polymer optical fibres, including Poly methyl methacrylate (PMMA) and TOPAS cyclic olefin copolymer based microstructured polymer optical fibres and PMMA based step-index photosensitive polymer optical fibre, using the 325nm continuous wave ultraviolet laser and phase mask technique. The thermal response of fabricated microstructured polymer optical fibre Bragg gratings has been characterized. The PMMA based single mode microstructured polymer optical fibre Bragg gratings exhibit negative non-linear Bragg wavelength shift with temperature, including a quasi-linear region. The thermal sensitivity of such Bragg gratings in the linear region is up to -97pm/°C. A permanent shift in the grating wavelength at room temperature is observed when such gratings are heated above a threshold temperature which can be extended by annealing the fibre before grating inscription. The largest positive Bragg wavelength shift with temperature in transmission is observed in TOPAS based few moded microstructured polymer optical fibre Bragg gratings and the measured temperature sensitivity is 250±0.5pm/°C. Gluing method is developed to maintain stable optical coupling between PMMA based single mode step index polymer optical fibre Bragg gratings and single mode step index silica optical fibre. Being benefit from this success, polymer optical fibre Bragg gratings are able to be characterised for their temperature, humidity and strain sensitivity, which are -48.2±1pm/°C, 38.3±0.5pm per %RH and 1.33±0.04 pm/µ??respectively. These sensitivities have been utilised to achieve several applications. The strain sensitivity of step index polymer optical fibre Bragg grating devices has been exploited in the potential application of the strain condition monitoring of heavy textiles and when being attached to textile specimens with certain type of adhesives. These polymer fibre Bragg grating devices show better strain transfer and lower structure reinforcement than silica optical fibre Bragg grating devices. The humidity sensitivity of step index polymer optical fibre Bragg grating devices is applied to detecting water in jet fuel and is proved to be able to measure water content of less than 20 ppm in Jet fuel. A simultaneous temperature and humidity sensor is also made by attaching a polymer fibre Bragg grating to a silica optical fibre Bragg grating and it shows better humidity measurement accuracy than that of electronic competitors.
Resumo:
This thesis described the research carried out on the development of a novel hardwired tactile sensing system tailored for the application of a next generation of surgical robotic and clinical devices, namely a steerable endoscope with tactile feedback, and a surface plate for patient posture and balance. Two case studies are examined. The first is a one-dimensional sensor for the steerable endoscope retrieving shape and ‘touch’ information. The second is a two-dimensional surface which interprets the three-dimensional motion of a contacting moving load. This research can be used to retrieve information from a distributive tactile sensing surface of a different configuration, and can interpret dynamic and static disturbances. This novel approach to sensing has the potential to discriminate contact and palpation in minimal invasive surgery (MIS) tools, and posture and balance in patients. The hardwired technology uses an embedded system based on Field Programmable Gate Arrays (FPGA) as the platform to perform the sensory signal processing part in real time. High speed robust operation is an advantage from this system leading to versatile application involving dynamic real time interpretation as described in this research. In this research the sensory signal processing uses neural networks to derive information from input pattern from the contacting surface. Three neural network architectures namely single, multiple and cascaded were introduced in an attempt to find the optimum solution for discrimination of the contacting outputs. These architectures were modelled and implemented into the FPGA. With the recent introduction of modern digital design flows and synthesis tools that essentially take a high-level sensory processing behaviour specification for a design, fast prototyping of the neural network function can be achieved easily. This thesis outlines the challenge of the implementations and verifications of the performances.