913 resultados para Self-reinforced composites


Relevância:

80.00% 80.00%

Publicador:

Resumo:

SiC fiber-reinforced SiC matrix composite (SiCf/SiC) is one of the leading candidates in ceramic materials for engineering applications due to its unique combination of properties such as high thermal conductivity, high resistance to corrosion and working conditions. Fiber-reinforced composites are materials which exhibit a significant improvement in properties like ductility in comparison to the monolithic SiC ceramic. The SiCf/SiC composite was obtained from a C/C composite precursor using convertion reaction under high temperature and controlled atmosphere. In this work, SiC phase presented the stacking faults in the structure, being not possible to calculate the unit cell size, symmetry and bond lengths but it seem equal card number 29-1129 of JCPDS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Atualmente, devido à necessidade crescente de materiais de bom desempenho mecânico e devido questões ambientais, busca-se cada vez mais a substituição de fibras sintéticas usadas em compósitos (como a fibra de vidro) por fibras naturais. Uma fibra natural que já vem sendo utilizada pela indústria automobilística é a fibra de Curauá (Ananas erectifolius) e apresenta excelente resistência à tração. Na expectativa de melhorar certas propriedades dos compósitos e de reduzir a quantidade de resina, e desse modo o custo, busca-se também o uso de cargas incorporadas à matriz dos compósitos. Em trabalhos recentes têm-se estudado a lama vermelha (resíduo da indústria da bauxita) como carga devido sua alta disponibilidade e baixo custo, além de ser uma resíduo potencialmente perigoso para o ambiente. O objetivo desse trabalho foi analisar os efeitos da adição de lama vermelha em compósitos de poliéster reforçados com fibras naturais de Curauá (Ananas erectifolius). Os resultados mostraram que a utilização da lama vermelha como carga em proporções volumétricas maiores ou iguais a 20% e fibra de curauá em fração volumétrica de 5% provocou um efeito de reforço significativo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Due to mechanical and aesthetic improvement properties, continuous fiber-reinforced composites have been developed to replace the metal framework in fixed partial dentures becoming an interesting alternative to conventional treatments. A male patient, 57 years old, attended at Fixed Partial Denture Clinic of Araraquara Dental School - UNESP, complaining about upper right first molar absence. After clinical examination, it was observed: upper right second molar with amalgam restoration and periodontal bone reduction and upper right second premolar unsatisfactory treated. Following the clinical conditions and the patient expectations, it was decided to use a fiber-reinforced composite resin to make a three-element fixed bridge. The patient showed full satisfaction with the aesthetic and functional results. The case has been followed up for 60 months.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper studies attained microstructures and reactive mechanisms involved in vacuum infiltration of copper aluminate preforms with liquid aluminium. At high temperatures, under vacuum, the inherent alumina film enveloping the metal is overcome, and aluminium is expected to reduce copper aluminate, rendering alumina and copper. Under this approach, copper aluminate toils as a controlled infiltration path for aluminium, resulting in reactive wetting and infiltration of the preforms. Ceramic preforms containing a mixture of Al2O3 and CuAl2O4 were infiltrated with aluminium under distinct vacuum levels and temperatures, and the resulting reaction and infiltration behaviour is discussed. Copper aluminates stability ranges depend on vacuum level and oxygen partial pressure, which determine both CuAl2O4 and CuAlO2 ability for liquid aluminium infiltration. At 1100 °C and 0.76 atm vacuum level CuAl2O4 is stable, indicating pO2 above 0.11 atm. Reactive infiltration is achieved via reaction between aluminium and CuAl2O4; however, fast formation of an alumina film blocking liquid aluminium wicking results in incipient infiltration. At 1000 °C and 3.8 × 10−7 atm vacuum level, CuAlO2 decomposes to Cu and Al2O3 indicating a pO2 below 6.0 × 10−7 atm; infiltration of the ceramic is hindered by the non-wetting behaviour of the resulting metal alloy. At 1000 °C and 1.9 × 10−6 atm vacuum level CuAlO2 is stable, indicating pO2 above 6.0 × 10−7 atm. Extensive infiltration is achieved via redox reaction between aluminium and CuAlO2, rendering a microstructure characterised by uniform distribution of alumina particles amid an aluminium matrix. This work evidences that liquid aluminium infiltration upon copper aluminate-rich preforms is a feasible route to produce Al–matrix alumina-reinforced composites. The associated reduction reaction renders alumina, as fine particulate composite reinforcements, and copper, which dissolves in liquid aluminium contributing as a matrix strengthener.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to evaluate the behavior of reinforced composites with polyamide 6 fibers aligned (6000 rpm) and alignment (120 rpm) with or without CNT using the flexural strength test. After preparation of nanofibers aligned nylon 6 (6000 rpm) and alignment (120 rpm) with and without incorporation of nanotube carbon by the method of electrospinning, were performed one control group (n = 10) and 4 experimental groups (n = 40) G1: Control (just resin Charisma - Heraeus Kulzer) ;G2 Resin + N6 aligned (6000 rpm) + CNT; G3:Resin + N6 alignment (120 rpm) + CNT; G4: Resin + aligned ( 6000 rpm) N6. G5: Resin + N6 alignment (120 rpm). The fibers were cut to the dimensions of 0,3 x 15 mm and were applied an adhesive at the surface (Single Bond 2) for 5 min and cured. In the matrix, was added resin in the proximal box (Charisma A2, Heraeus Kulzer) and cured for 40 s. (power 1100 mW / cm²). A first layer of resin and on the resin was deposited. The resin layers specimens were light irradiated with three overlapping exposures delivered. For each resin layer were light irradiated for 40 sec. The samples were tested with a cross-speed of 1 mm / min, and a 50 Kgf at Universal testing machine (EMIC mod.DL2000). The Dunnet test showed that only the nanotube group was significantly different from the control group. The ANOVA two-way indicates that the nanotube factor was statistically significant (p < 0.05) and there is no interaction between factors and orientation nanotube. The presence of nanotube showed lower fracture resistance values for aligned and unaligned groups. The results of this study showed that the orientation of the fibers does not influence the strength of composite resins and the incorporation of nylon nanofibers with carbon nanotubes decreased the fracture resistance values. The presence of the fibers has not been able to improve the strength of the material in any of the...

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to evaluate the behavior of reinforced composites with polyamide 6 fibers aligned (6000 rpm) and alignment (120 rpm) with or without CNT using the flexural strength test. After preparation of nanofibers aligned nylon 6 (6000 rpm) and alignment (120 rpm) with and without incorporation of nanotube carbon by the method of electrospinning, were performed one control group (n = 10) and 4 experimental groups (n = 40) G1: Control (just resin Charisma - Heraeus Kulzer) ;G2 Resin + N6 aligned (6000 rpm) + CNT; G3:Resin + N6 alignment (120 rpm) + CNT; G4: Resin + aligned ( 6000 rpm) N6. G5: Resin + N6 alignment (120 rpm). The fibers were cut to the dimensions of 0,3 x 15 mm and were applied an adhesive at the surface (Single Bond 2) for 5 min and cured. In the matrix, was added resin in the proximal box (Charisma A2, Heraeus Kulzer) and cured for 40 s. (power 1100 mW / cm²). A first layer of resin and on the resin was deposited. The resin layers specimens were light irradiated with three overlapping exposures delivered. For each resin layer were light irradiated for 40 sec. The samples were tested with a cross-speed of 1 mm / min, and a 50 Kgf at Universal testing machine (EMIC mod.DL2000). The Dunnet test showed that only the nanotube group was significantly different from the control group. The ANOVA two-way indicates that the nanotube factor was statistically significant (p < 0.05) and there is no interaction between factors and orientation nanotube. The presence of nanotube showed lower fracture resistance values for aligned and unaligned groups. The results of this study showed that the orientation of the fibers does not influence the strength of composite resins and the incorporation of nylon nanofibers with carbon nanotubes decreased the fracture resistance values. The presence of the fibers has not been able to improve the strength of the material in any of the...

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The goal of this article was to evaluate the surface characteristics of the pine fibres and its impact on the performance of fibre-cement composites. Lower polar contribution of the surface energy indicates that unbleached fibres have less hydrophilic nature than the bleached fibres. Bleaching the pulp makes the fibres less stronger, more fibrillated and permeable to liquids due to removal the amorphous lignin and its extraction from the fibre surface. Atomic force microscopy reveals these changes occurring on the fibre surface and contributes to understanding the mechanism of adhesion of the resulting fibre to cement interface. Scanning electron microscopy shows that pulp bleaching increased fibre/cement interfacial bonding, whilst unbleached fibres were less susceptible to cement precipitation into the fibre cavities (lumens) in the prepared composites. Consequently, bleached fibre-reinforced composites had lower ductility due to the high interfacial adhesion between the fibre and the cement and elevated rates of fibre mineralization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sensor and actuator based on laminated piezocomposite shells have shown increasing demand in the field of smart structures. The distribution of piezoelectric material within material layers affects the performance of these structures; therefore, its amount, shape, size, placement, and polarization should be simultaneously considered in an optimization problem. In addition, previous works suggest the concept of laminated piezocomposite structure that includes fiber-reinforced composite layer can increase the performance of these piezoelectric transducers; however, the design optimization of these devices has not been fully explored yet. Thus, this work aims the development of a methodology using topology optimization techniques for static design of laminated piezocomposite shell structures by considering the optimization of piezoelectric material and polarization distributions together with the optimization of the fiber angle of the composite orthotropic layers, which is free to assume different values along the same composite layer. The finite element model is based on the laminated piezoelectric shell theory, using the degenerate three-dimensional solid approach and first-order shell theory kinematics that accounts for the transverse shear deformation and rotary inertia effects. The topology optimization formulation is implemented by combining the piezoelectric material with penalization and polarization model and the discrete material optimization, where the design variables describe the amount of piezoelectric material and polarization sign at each finite element, with the fiber angles, respectively. Three different objective functions are formulated for the design of actuators, sensors, and energy harvesters. Results of laminated piezocomposite shell transducers are presented to illustrate the method. Copyright (C) 2012 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the last decades, the building materials and construction industry has been contributing to a great extent to generate a high impact on our environment. As it has been considered one of the key areas in which to operate to significantly reduce our footprint on environment, there has been widespread belief that particular attention now has to be paid and specific measures have to be taken to limit the use of non-renewable resources.The aim of this thesis is therefore to study and evaluate sustainable alternatives to commonly used building materials, mainly based on ordinary Portland Cement, and find a supportable path to reduce CO2 emissions and promote the re-use of waste materials. More specifically, this research explores different solutions for replacing cementitious binders in distinct application fields, particularly where special and more restricting requirements are needed, such as restoration and conservation of architectural heritage. Emphasis was thus placed on aspects and implications more closely related to the concept of non-invasivity and environmental sustainability. A first part of the research was addressed to the study and development of sustainable inorganic matrices, based on lime putty, for the pre-impregnation and on-site binding of continuous carbon fiber fabrics for structural rehabilitation and heritage restoration. Moreover, with the aim to further limit the exploitation of non-renewable resources, the synthesis of chemically activated silico-aluminate materials, as metakaolin, ladle slag or fly ash, was thus successfully achieved. New sustainable binders were hence proposed as novel building materials, suitable to be used as primary component for construction and repair mortars, as bulk materials in high-temperature applications or as matrices for high-toughness fiber reinforced composites.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Foundry aluminum alloys play a fundamental role in several industrial fields, as they are employed in the production of several components in a wide range of applications. Moreover, these alloys can be employed as matrix for the development of Metal Matrix Composites (MMC), whose reinforcing phases may have different composition, shape and dimension. Ceramic particle reinforced MMCs are particular interesting due to their isotropic properties and their high temperature resistance. For this kind of composites, usually, decreasing the size of the reinforcing phase leads to the increase of mechanical properties. For this reason, in the last 30 years, the research has developed micro-reinforced composites at first, characterized by low ductility, and more recently nano-reinforced ones (the so called metal matrix nanocomposite, MMNCs). The nanocomposites can be obtained through several production routes: they can be divided in in-situ techniques, where the reinforcing phase is generated during the composite production through appropriate chemical reactions, and ex situ techniques, where ceramic dispersoids are added to the matrix once already formed. The enhancement in mechanical properties of MMNCs is proved by several studies; nevertheless, it is necessary to address some issues related to each processing route, as the control of process parameters and the effort to obtain an effective dispersion of the nanoparticles in the matrix, which sometimes actually restrict the use of these materials at industrial level. In this work of thesis, a feasibility study and implementation of production processes for Aluminum and AlSi7Mg based-MMNCs was conducted. The attention was focused on the in-situ process of gas bubbling, with the aim to obtain an aluminum oxide reinforcing phase, generated by the chemical reaction between the molten matrix and industrial dry air injected in the melt. Moreover, for what concerns the ex-situ techniques, stir casting process was studied and applied to introduce alumina nanoparticles in the same matrix alloys. The obtained samples were characterized through optical and electronic microscopy, then by micro-hardness tests, in order to evaluate possible improvements in mechanical properties of the materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This project was born with the aim of developing an environmentally and financially sustainable process to dispose of end-life tires. In this perspective was devised an innovative static bed batch pilot reactor where pyrolysis can be carried out on the whole tires in order to recover energy and materials and simultaneously save the energy costs of their shredding. The innovative plant is also able to guarantee a high safety of the process thanks to the presence of a hydraulic guard. The pilot plant was used to pyrolyze new and end-life tires at temperatures from 400 to 600°C with step of 50°C in presence of steam. The main objective of this research was to evaluate the influence of the maximum process temperature on yields and chemical-physics properties of pyrolysis products. In addition, in view of a scale-up of the plant in continuous mode, the influence of the nature of several different tires as well as the effects of the aging on the final products were studied. The same pilot plant was also used to carry out pyrolysis on polymeric matrix composites in order to obtain chemical feedstocks from the resin degradation together with the recovery of the reinforcement in the form of fibers. Carbon fibers reinforced composites ad fiberglass was treated in the 450-600°C range and the products was fully characterized. A second oxidative step was performed on the pyrolysis solid residue in order to obtain the fibers in a suitable condition for a subsequent re-impregnation in order to close the composite Life Cycle in a cradle-to-cradle approach. These investigations have demonstrated that steel wires, char, carbon and glass fibers recovered in the prototypal plant as solid residues can be a viable alternative to pristine materials, making use of them to obtain new products with a commercial added value.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

AIM: In 2001 a prototype of a gun to apply bioabsorbable tacks in cranio-facial surgery has been developed. METHODS: From May 2001 to May 2002 this device has been used in the University Hospital of Innsbruck (Austria) for different cranioplasty procedures, in 34 children, showing its reliability for cranio-facial bone fixation. The children were affected by isolated craniosynostosis or by syndromical synostosis (Apert, Crouzon) and in a case of benign tumor of the parietal skull vault. The range of age, at the time of surgery, was between 3 months and 204 months of age. Bone segments were fixed using self-reinforced polylactide plates and tacks. RESULTS: Firm fixation was obtained intra-operatively and the operative time was reduced about 25-30 minutes as compared to use of plates and screws. This device has just one limitation in its own spring force: sometimes the bone thinner than 1 mm has been broken applying the tacks. CONCLUSION: After the first-year's experience it is possible to confirm that this device reduces, in selected cases, operative time, blood loss, risk of infection and, as a result, the costs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

De modo a satisfazer aspectos de resistência, custo ou conforto, o aperfeiçoamento do desempenho das estruturas é uma meta sempre almejada na Engenharia. Melhorias têm sido alcançadas dado ao crescente uso de materiais compósitos, pois estes apresentam propriedades físicas diferenciadas capazes de atender as necessidades de projeto. Associado ao emprego de compósitos, o estudo da plasticidade demonstra uma interessante alternativa para aumentar o desempenho estrutural ao conferir uma capacidade resistente adicional ao conjunto. Entretanto, alguns problemas podem ser encontrados na análise elastoplástica de compósitos, além das próprias dificuldades inerentes à incorporação de fibras na matriz, no caso de compósitos reforçados. A forma na qual um compósito reforçado por fibras e suas fases têm sua representação e simulação é de extrema importância para garantir que os resultados obtidos sejam compatíveis com a realidade. À medida que se desenvolvem modelos mais refinados, surgem problemas referentes ao custo computacional, além da necessidade de compatibilização dos graus de liberdade entre os nós das malhas de elementos finitos da matriz e do reforço, muitas vezes exigindo a coincidência das referidas malhas. O presente trabalho utiliza formulações que permitem a representação de compósitos reforçados com fibras sem que haja a necessidade de coincidência entre malhas. Além disso, este permite a simulação do meio e do reforço em regime elastoplástico com o objetivo de melhor estudar o real comportamento. O modelo constitutivo adotado para a plasticidade é o de von Mises 2D associativo com encruamento linear positivo e a solução deste modelo foi obtida através de um processo iterativo. A formulação de elementos finitos posicional é adotada com descrição Lagrangeana Total e apresenta as posições do corpo no espaço como parâmetros nodais. Com o intuito de averiguar a correta implementação das formulações consideradas, exemplos para validação e apresentação das funcionalidades do código computacional desenvolvido foram analisados.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Funding Financial support of this research by the Engineering and Physical Sciences Research Council (EPSRC/GR/L51348) and the British Ministry of Defence is gratefully acknowledged.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The evaluation of the mesh opening stiffness of fishing nets is an important issue in assessing the selectivity of trawls. It appeared that a larger bending rigidity of twines decreases the mesh opening and could reduce the escapement of fish. Nevertheless, netting structure is complex. A netting is made up of braided twines made of polyethylene or polyamide. These twines are tied with non-symmetrical knots. Thus, these assemblies develop contact-friction interactions. Moreover, the netting can be subject to large deformation. In this study, we investigate the responses of netting samples to different types of solicitations. Samples are loaded and unloaded with creep and relaxation stages, with different boundary conditions. Then, two models have been developed: an analytical model and a finite element model. The last one was used to assess, with an inverse identification algorithm, the bending stiffness of twines. In this paper, experimental results and a model for netting structures made up of braided twines are presented. During dry forming of a composite, for example, the matrix is not present or not active, and relative sliding can occur between constitutive fibres. So an accurate modelling of the mechanical behaviour of fibrous material is necessary. This study offers experimental data which could permit to improve current models of contact-friction interactions [4], to validate models for large deformation analysis of fibrous materials [1] on a new experimental case, then to improve the evaluation of the mesh opening stiffness of a fishing net