991 resultados para Security protocol


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyse the finite-size security of the efficient Bennett-Brassard 1984 protocol implemented with decoy states and apply the results to a gigahertz-clocked quantum key distribution system. Despite the enhanced security level, the obtained secure key rates are the highest reported so far at all fibre distances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we introduce a new mathematical tool for optimization of routes, topology design, and energy efficiency in wireless sensor networks. We introduce a vector field formulation that models communication in the network, and routing is performed in the direction of this vector field at every location of the network. The magnitude of the vector field at every location represents the density of amount of data that is being transited through that location. We define the total communication cost in the network as the integral of a quadratic form of the vector field over the network area. With the above formulation, we introduce a mathematical machinery based on partial differential equations very similar to the Maxwell's equations in electrostatic theory. We show that in order to minimize the cost, the routes should be found based on the solution of these partial differential equations. In our formulation, the sensors are sources of information, and they are similar to the positive charges in electrostatics, the destinations are sinks of information and they are similar to negative charges, and the network is similar to a non-homogeneous dielectric media with variable dielectric constant (or permittivity coefficient). In one of the applications of our mathematical model based on the vector fields, we offer a scheme for energy efficient routing. Our routing scheme is based on changing the permittivity coefficient to a higher value in the places of the network where nodes have high residual energy, and setting it to a low value in the places of the network where the nodes do not have much energy left. Our simulations show that our method gives a significant increase in the network life compared to the shortest path and weighted shortest path schemes. Our initial focus is on the case where there is only one destination in the network, and later we extend our approach to the case where there are multiple destinations in the network. In the case of having multiple destinations, we need to partition the network into several areas known as regions of attraction of the destinations. Each destination is responsible for collecting all messages being generated in its region of attraction. The complexity of the optimization problem in this case is how to define regions of attraction for the destinations and how much communication load to assign to each destination to optimize the performance of the network. We use our vector field model to solve the optimization problem for this case. We define a vector field, which is conservative, and hence it can be written as the gradient of a scalar field (also known as a potential field). Then we show that in the optimal assignment of the communication load of the network to the destinations, the value of that potential field should be equal at the locations of all the destinations. Another application of our vector field model is to find the optimal locations of the destinations in the network. We show that the vector field gives the gradient of the cost function with respect to the locations of the destinations. Based on this fact, we suggest an algorithm to be applied during the design phase of a network to relocate the destinations for reducing the communication cost function. The performance of our proposed schemes is confirmed by several examples and simulation experiments. In another part of this work we focus on the notions of responsiveness and conformance of TCP traffic in communication networks. We introduce the notion of responsiveness for TCP aggregates and define it as the degree to which a TCP aggregate reduces its sending rate to the network as a response to packet drops. We define metrics that describe the responsiveness of TCP aggregates, and suggest two methods for determining the values of these quantities. The first method is based on a test in which we drop a few packets from the aggregate intentionally and measure the resulting rate decrease of that aggregate. This kind of test is not robust to multiple simultaneous tests performed at different routers. We make the test robust to multiple simultaneous tests by using ideas from the CDMA approach to multiple access channels in communication theory. Based on this approach, we introduce tests of responsiveness for aggregates, and call it CDMA based Aggregate Perturbation Method (CAPM). We use CAPM to perform congestion control. A distinguishing feature of our congestion control scheme is that it maintains a degree of fairness among different aggregates. In the next step we modify CAPM to offer methods for estimating the proportion of an aggregate of TCP traffic that does not conform to protocol specifications, and hence may belong to a DDoS attack. Our methods work by intentionally perturbing the aggregate by dropping a very small number of packets from it and observing the response of the aggregate. We offer two methods for conformance testing. In the first method, we apply the perturbation tests to SYN packets being sent at the start of the TCP 3-way handshake, and we use the fact that the rate of ACK packets being exchanged in the handshake should follow the rate of perturbations. In the second method, we apply the perturbation tests to the TCP data packets and use the fact that the rate of retransmitted data packets should follow the rate of perturbations. In both methods, we use signature based perturbations, which means packet drops are performed with a rate given by a function of time. We use analogy of our problem with multiple access communication to find signatures. Specifically, we assign orthogonal CDMA based signatures to different routers in a distributed implementation of our methods. As a result of orthogonality, the performance does not degrade because of cross interference made by simultaneously testing routers. We have shown efficacy of our methods through mathematical analysis and extensive simulation experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel wireless local area network (WLAN) security processor is described in this paper. It is designed to offload security encapsulation processing from the host microprocessor in an IEEE 802.11i compliant medium access control layer to a programmable hardware accelerator. The unique design, which comprises dedicated cryptographic instructions and hardware coprocessors, is capable of performing wired equivalent privacy, temporal key integrity protocol, counter mode with cipher block chaining message authentication code protocol, and wireless robust authentication protocol. Existing solutions to wireless security have been implemented on hardware devices and target specific WLAN protocols whereas the programmable security processor proposed in this paper provides support for all WLAN protocols and thus, can offer backwards compatibility as well as future upgrade ability as standards evolve. It provides this additional functionality while still achieving equivalent throughput rates to existing architectures. © 2006 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The provision of security in mobile ad hoc networks is of paramount importance due to their wireless nature. However, when conducting research into security protocols for ad hoc networks it is necessary to consider these in the context of the overall system. For example, communicational delay associated with the underlying MAC layer needs to be taken into account. Nodes in mobile ad hoc networks must strictly obey the rules of the underlying MAC when transmitting security-related messages while still maintaining a certain quality of service. In this paper a novel authentication protocol, RASCAAL, is described and its performance is analysed by investigating both the communicational-related effects of the underlying IEEE 802.11 MAC and the computational-related effects of the cryptographic algorithms employed. To the best of the authors' knowledge, RASCAAL is the first authentication protocol which proposes the concept of dynamically formed short-lived random clusters with no prior knowledge of the cluster head. The performance analysis demonstrates that the communication losses outweigh the computation losses with respect to energy and delay. MAC-related communicational effects account for 99% of the total delay and total energy consumption incurred by the RASCAAL protocol. The results also show that a saving in communicational energy of up to 12.5% can be achieved by changing the status of the wireless nodes during the course of operation. Copyright (C) 2009 G. A. Safdar and M. P. O'Neill (nee McLoone).

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dual-rail encoding, return-to-spacer protocol, and hazard-free logic can be used to resist power analysis attacks by making energy consumed per clock cycle independent of processed data. Standard dual-rail logic uses a protocol with a single spacer, e.g., all-zeros, which gives rise to energy balancing problems. We address these problems by incorporating two spacers; the spacers alternate between adjacent clock cycles. This guarantees that all gates switch in every clock cycle regardless of the transmitted data values. To generate these dual-rail circuits, an automated tool has been developed. It is capable of converting synchronous netlists into dual-rail circuits and it is interfaced to industry CAD tools. Dual-rail and single-rail benchmarks based upon the advanced encryption standard (AES) have been simulated and compared in order to evaluate the method and the tool.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increased complexity and interconnectivity of Supervisory Control and Data Acquisition (SCADA) systems in the Smart Grid has exposed them to a wide range of cyber-security issues, and there are a multitude of potential access points for cyber attackers. This paper presents a SCADA-specific cyber-security test-bed which contains SCADA software and communication infrastructure. This test-bed is used to investigate an Address Resolution Protocol (ARP) spoofing based man-in-the-middle attack. Finally, the paper proposes a future work plan which focuses on applying intrusion detection and prevention technology to address cyber-security issues in SCADA systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyber threats in Supervisory Control and Data Acquisition (SCADA) systems have the potential to render physical damage and jeopardize power system operation, safety and stability. SCADA systems were originally designed with little consideration of escalating cyber threats and hence the problem of how to develop robust intrusion detection technologies to tailor the requirements of SCADA is an emerging topic and a big challenge. This paper proposes a stateful Intrusion Detection System (IDS) using a Deep Packet Inspection (DPI) method to improve the cyber-security of SCADA systems using the IEC 60870-5-104 protocol which is tailored for basic telecontrol communications. The proposed stateful protocol analysis approach is presented that is designed specifically for the IEC 60870-5-104 protocol. Finally, the novel intrusion detection approach are implemented and validated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The infrastructure cloud (IaaS) service model offers improved resource flexibility and availability, where tenants - insulated from the minutiae of hardware maintenance - rent computing resources to deploy and operate complex systems. Large-scale services running on IaaS platforms demonstrate the viability of this model; nevertheless, many organizations operating on sensitive data avoid migrating operations to IaaS platforms due to security concerns. In this paper, we describe a framework for data and operation security in IaaS, consisting of protocols for a trusted launch of virtual machines and domain-based storage protection. We continue with an extensive theoretical analysis with proofs about protocol resistance against attacks in the defined threat model. The protocols allow trust to be established by remotely attesting host platform configuration prior to launching guest virtual machines and ensure confidentiality of data in remote storage, with encryption keys maintained outside of the IaaS domain. Presented experimental results demonstrate the validity and efficiency of the proposed protocols. The framework prototype was implemented on a test bed operating a public electronic health record system, showing that the proposed protocols can be integrated into existing cloud environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maintaining a high level of data security with a low impact on system performance is more challenging in wireless multimedia applications. Protocols that are used for wireless local area network (WLAN) security are known to significantly degrade performance. In this paper, we propose an enhanced security system for a WLAN. Our new design aims to decrease the processing delay and increase both the speed and throughput of the system, thereby making it more efficient for multimedia applications. Our design is based on the idea of offloading computationally intensive encryption and authentication services to the end systems’ CPUs. The security operations are performed by the hosts’ central processor (which is usually a powerful processor) before delivering the data to a wireless card (which usually has a low-performance processor). By adopting this design, we show that both the delay and the jitter are significantly reduced. At the access point, we improve the performance of network processing hardware for real-time cryptographic processing by using a specialized processor implemented with field-programmable gate array technology. Furthermore, we use enhanced techniques to implement the Counter (CTR) Mode with Cipher Block Chaining Message Authentication Code Protocol (CCMP) and the CTR protocol. Our experiments show that it requires timing in the range of 20–40 μs to perform data encryption and authentication on different end-host CPUs (e.g., Intel Core i5, i7, and AMD 6-Core) as compared with 10–50 ms when performed using the wireless card. Furthermore, when compared with the standard WiFi protected access II (WPA2), results show that our proposed security system improved the speed to up to 3.7 times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Internet today has become a vital part of day to day life, owing to the revolutionary changes it has brought about in various fields. Dependence on the Internet as an information highway and knowledge bank is exponentially increasing so that a going back is beyond imagination. Transfer of critical information is also being carried out through the Internet. This widespread use of the Internet coupled with the tremendous growth in e-commerce and m-commerce has created a vital need for infonnation security.Internet has also become an active field of crackers and intruders. The whole development in this area can become null and void if fool-proof security of the data is not ensured without a chance of being adulterated. It is, hence a challenge before the professional community to develop systems to ensure security of the data sent through the Internet.Stream ciphers, hash functions and message authentication codes play vital roles in providing security services like confidentiality, integrity and authentication of the data sent through the Internet. There are several ·such popular and dependable techniques, which have been in use widely, for quite a long time. This long term exposure makes them vulnerable to successful or near successful attempts for attacks. Hence it is the need of the hour to develop new algorithms with better security.Hence studies were conducted on various types of algorithms being used in this area. Focus was given to identify the properties imparting security at this stage. By making use of a perception derived from these studies, new algorithms were designed. Performances of these algorithms were then studied followed by necessary modifications to yield an improved system consisting of a new stream cipher algorithm MAJE4, a new hash code JERIM- 320 and a new message authentication code MACJER-320. Detailed analysis and comparison with the existing popular schemes were also carried out to establish the security levels.The Secure Socket Layer (SSL) I Transport Layer Security (TLS) protocol is one of the most widely used security protocols in Internet. The cryptographic algorithms RC4 and HMAC have been in use for achieving security services like confidentiality and authentication in the SSL I TLS. But recent attacks on RC4 and HMAC have raised questions about the reliability of these algorithms. Hence MAJE4 and MACJER-320 have been proposed as substitutes for them. Detailed studies on the performance of these new algorithms were carried out; it has been observed that they are dependable alternatives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Wireless Sensor Networks (WSN), neglecting the effects of varying channel quality can lead to an unnecessary wastage of precious battery resources and in turn can result in the rapid depletion of sensor energy and the partitioning of the network. Fairness is a critical issue when accessing a shared wireless channel and fair scheduling must be employed to provide the proper flow of information in a WSN. In this paper, we develop a channel adaptive MAC protocol with a traffic-aware dynamic power management algorithm for efficient packet scheduling and queuing in a sensor network, with time varying characteristics of the wireless channel also taken into consideration. The proposed protocol calculates a combined weight value based on the channel state and link quality. Then transmission is allowed only for those nodes with weights greater than a minimum quality threshold and nodes attempting to access the wireless medium with a low weight will be allowed to transmit only when their weight becomes high. This results in many poor quality nodes being deprived of transmission for a considerable amount of time. To avoid the buffer overflow and to achieve fairness for the poor quality nodes, we design a Load prediction algorithm. We also design a traffic aware dynamic power management scheme to minimize the energy consumption by continuously turning off the radio interface of all the unnecessary nodes that are not included in the routing path. By Simulation results, we show that our proposed protocol achieves a higher throughput and fairness besides reducing the delay

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of wireless sensor network technology has enabled us to develop advanced systems for real time monitoring. In the present scenario wireless sensor networks are increasingly being used for precision agriculture. The advantages of using wireless sensor networks in agriculture are distributed data collection and monitoring, monitor and control of climate, irrigation and nutrient supply. Hence decreasing the cost of production and increasing the efficiency of production. This paper describes the security issues related to wireless sensor networks and suggests some techniques for achieving system security. This paper also discusses a protocol that can be adopted for increasing the security of the transmitted data