919 resultados para Sea turtles


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Durante a temporada de nidação, fêmeas de tartarugas marinhas costumam reduzir ou cessar por completo a ingestão de alimentos. Este fato sugere que o armazenamento de energia e nutrientes para a reprodução ocorra durante o período que antecede a migração para os sítios reprodutivos, enquanto estes animais ainda se encontram nas áreas de alimentação. Do ponto de vista fisiológico, tartarugas em atividade reprodutiva são capazes de permanecer longos períodos em jejum. Fatores neuroendócrinos vêm sendo recentemente apontados como os mais relevantes para a manutenção da homeostase energética de todos os vertebrados; entre eles, a leptina (hormônio anorexígeno) e a grelina (peptídeo orexígeno). Com o objetivo de compreender o mecanismo de fome e saciedade nas tartarugas marinhas, investigamos os níveis séricos destes hormônios e de outros indicadores nutricionais em fêmeas de Eretmochelys imbricata desovando no litoral do Rio Grande do Norte, Brasil. Foram coletadas amostras de sangue de 41 tartarugas durante as temporadas reprodutivas de 2010/2011 e 2011/2012. Os níveis séricos de leptina diminuíram significativamente ao longo do período de nidação, de modo a explicar a busca por alimentos ao término da temporada. Ao mesmo tempo, registramos uma tendência crescente nos níveis séricos de grelina, fator este que também justifica a remigração para as áreas de alimentação no fim do período. Não foram observadas tendências lineares para alguns dos parâmetros avaliados, entre eles: hematócrito, alanina aminotransferase (ALT), aspartato aminotransferase (AST), fosfatase alcalina (FA), gama glutamil transferase (GGT), lipoproteínas de baixa densidade (LDL) e lipoproteínas de alta densidade (HDL). É possível que a maior parte dos indicadores nutricionais tenha apresentado redução gradativa devido ao estresse fisiológico decorrente da vitelogênese e de repetidas oviposições. No entanto, é valido ressaltar que o quadro de restrição calórica por tempo prolongado é o principal responsável pelas alterações em índice de massa corpórea e padrões bioquímicos nestes animais.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Satellite telemetry is a common tool for examining sea turtle movements, and many research programs have successfully tracked adults. Relatively short satellite track durations recorded for juvenile Kemp’s ridley sea turtles, Lepidochelys kempii, in the northwestern Gulf of Mexico raised questions regarding premature transmission loss. We examined interactions between juvenile sea turtles outfitted with platform terminal transmitters (PTT’s) and turtle excluder devices (TED’s) and the potential for transmission loss due to this interaction. A pilot study was conducted with eight 34-month-old, captive-reared loggerhead sea turtles, Caretta caretta; a larger trial the following year used twenty 34-month-olds. Half of the turtles in each trial were outfitted with dummy PTT’s (8×4×2 cm), and all turtles were sent through a trawl equipped with a bottom-opening Super-Shooter TED. No apparent damage was sustained by any PTT, but four of five PTT-outfitted loggerheads encountering the TED carapace-first exhibited increased escape times when the PTT wedged between the TED deflector bars (10.2 cm apart). Overall, 15 loggerheads (54%) impacted the TED carapace-first. Attachment of PTT’s to smaller sea turtles may slow or, in worst cases, inhibit escape from TED’s. Likewise, loose or poorly secured PTT’s could impede escape or be shed during such an interaction. Researchers tracking small turtles in or near regions with trawling activity should consider PTT size and shape and the combined PTT/adhesive profile to minimize potentially detrimental interactions with TED’s.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fishery observers collected data from 307 tows during 96 trips aboard skimmer trawl vessels in Louisiana’s coastal waters from September 2004 through June 2005 to estimate catch rates of target and nontarget species, including sea turtles (Cheloniidae and Dermochelyidae), by area and season during commercial shrimping operations. About 16,965.7 kg of total catch were recorded during 517.0 hours of fishing operations. Based on weight extrapolations from species composition samples, penaeid shrimp (Penaeidae) dominated the catch at 66%, followed by finfish at 19%, nonpenaeid shrimp crustaceans at 7%, discarded penaeid shrimp at 6%, and debris at 3%. Noncrustacean invertebrates comprised less than 1%. Catch rates in kilograms per hour by category was 21.6 for penaeid shrimp, 6.2 for finfish, 2.2 for nonpenaeid crustaceans, 1.8 for discarded penaeid shrimp, and 0.9 for debris. White shrimp, Litopenaeus setiferus, other penaeid shrimp, and Gulf menhaden, Brevoortia patronus, were the top three dominant species by weight. Seasonally, a higher catch rate was observed from May through August 2005 for penaeid shrimp as compared with the September through December 2004 period. Conversely, the September through December 2004 period experienced a higher catch rate for finfish than during May through August 2005. No sea turtle interactions were documented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An observer program of the shark drift gillnet fishery off the Atlantic coast of Florida and Georgia was begun in 1993 to define the fishery and estimate bycatch including bottlenose dolphin, Tursiops truncatus, and sea turtles. Boats in the fishery were 12.2-19.8 m long. Nets used were 275-1,800 m long and 3.2-4.1 m deep. Stretched-mesh sizes used were 12.7-29.9 cm. Fishing trips were usually <18 h and occurred within 30 n.mi. of port. Fishing with an observer aboard occurred between Savannah, Ga., and Jacksonville, Fla., and off Cape Canaveral, Fla. Nets were set at least 3 n.mi. offshore. Numbers of boats in the fishery increased from 5 in 1993 to 11 in 1995, but total trips decreased from 185 in 1994 to 149 in 1995. During 1993-95, 48 observer trips were completed and 52 net sets were observed. No marine mammals were caught and two loggerhead turtles, Caretta caretta, were caught and released alive. A total of 9,270 animals (12 shark, 21 teleost, 4 ray, and 1 sea turtle species) were captured. Blacknose, Carcharhinus acronotus; Atlantic sharpnose, Rhizoprionodon terraenovae; and blacktip shark, C. limbatus), were the dominant sharks caught. King mackerel, Scomberomorus cavalIa; little tunny, Euthynnus alleteratus; and cownose ray, Rhinoptera bonasus, were the dominant bycatch species. About 8.4% of the total catch was bycatch. Of the totals, 9.4% of the sharks and 37.3% ofthe bycatch were discarded.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Shrimp fishermen trawling in the Gulf of Mexico and south Atlantic inadvertently capture and kill sea turtles which are classified as endangered species. Recent legislation requires the use of a Turtle Excluder Device(TED) which, when in place in the shrimp trawl, reduces sea turtle mortality. The impact of the TED on shrimp production is not known. This intermediate analysis of the TED regulations using an annual firm level simulation model indicated that the average Texas shrimp vessel had a low probability of being an economic success before regulations were enacted. An assumption that the TED regulations resulted in decreased production aggravated this condition and the change in Ending Net Worth and Net Present Value of Ending Net Worth before and after a TED was placed in the net was significant at the 5 percent level. However, the difference in the Internal Rate of Return for the TED and non-TED simulations was not significant unless the TED caused a substantial change in catch. This analysis did not allow for interactions between the fishermen in the shrimp industry, an assumption which could significantly alter the impact of TED use on the catch and earnings of the individual shrimp vessel.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bycatch, or the unintended capture of fish, marine mammals, sea turtles, and seabirds by fishing gear, occurs to some degree in most fisheries. The recently released National Marine Fisheries Service’s (NMFS) U.S. National Bycatch Report provides information on bycatch in U.S. commercial fisheries by fishery and species. The report also provides national statistics in the form of national bycatch ratio and a national bycatch estimate. We describe the methods used to develop these statistics and compare them to similar studies. We conclude that the national bycatch ratio and national bycatch estimates developed by NMFS represent the best available information on bycatch in U.S. fisheries. However, given changes in bycatch management over time, as well as inter-annual variability in bycatch levels and a high percentage of fisheries for which data on bycatch are not currently available, we recommend that NMFS continue to support bycatch data collection and reporting efforts to improve the quality and quantity of bycatch data and estimates available to fisheries managers and scientists over time. This will enable NMFS to meet its requirements for bycatch reporting under the Magnuson-Stevens Act (MSA), as well as requirements for bycatch minimization under the MSA, Marine Mammal Protection Act, and Endangered Species Act.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In 2006, the National Marine Fisheries Service, NOAA, initiated development of a national bycatch report that would provide bycatch estimates for U.S. commercial fisheries at the fishery and species levels for fishes, marine mammals, sea turtles, and seabirds. As part of this project, the need to quantify the relative quality of available bycatch data and estimation methods was identified. Working collaboratively with fisheries managers and scientists across the nation, a system of evaluation was developed. Herein we describe the development of this system (the “tier system”), its components, and its application. We also discuss the value of the tier system in allowing fisheries managers to identify research needs and efficiently allocate limited resources toward those areas that will result in the greatest improvement to bycatch data and estimation quality.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Marine mammals, such as dolphins, can serve as key indicator species in coastal areas by reflecting the effects of natural and anthropogenic stressors. As such they are often considered sentinels of environmental and ecosystem health (Bossart 2006; Wells et al. 2004; Fair and Becker 2000). The bottlenose dolphin is an apex predator and a key component of many estuarine environments in the southeastern United States (Woodward-Clyde Consultants 1994; SCDNR 2005). Health assessments of dolphins are especially critical in areas where populations are depleted, show signs of epidemic disease and/or high mortality and/or where habitat is being altered or impacted by human activities. Recent assessments of environmental conditions in the Indian River Lagoon, Florida (IRL) and the estuarine waters surrounding Charleston, South Carolina (CHS) highlight the need for studies of the health of local bottlenose dolphins. While the condition of southeastern estuaries was rated as fair in the National Coastal Condition Report (U.S. EPA 2001), it was noted that the IRL was characterized by poorer than expected benthic communities, significant sediment toxicity and increased nutrient concentrations. Similarly, portions of the CHS estuary have sediment concentrations of aliphatic aromatic hydrocarbons, select inorganic metals, and some persistent pesticides far in excess of reported bioeffect levels (Hyland et al. 1998). Long-term trends in water quality monitoring and recent scientific research suggest that waste load assimilation, non-point source runoff impacts, contaminated sediments, and toxic pollutants are key issues in the CHS estuary system. Several ‘hot spots’ with high levels of heavy metals and organic compounds have been identified (Van Dolah et al. 2004). High concentrations of anthropogenic trace metals, polychlorinated biphenyls (PCB’s) and pesticides have been found in the sediments of Charleston Harbor, as well as the Ashley and Cooper Rivers (Long et al. 1998). Two superfund sites are located within the CHS estuary and the key contaminants of concern associated with these sites are: polycyclic aromatic hydrocarbons (PAH), lead, chromium, copper, arsenic, zinc and dioxin. Concerns related to the overall health of IRL dolphins and dermatologic disease observed in many dolphins in the area (Bossart et al. 2003) initiated an investigation of potential factors which may have impacted dolphin health. From May-August 2001, 35 bottlenose dolphins died in the IRL during an unusual mortality event (MMC 2003). Many of these dolphins were diagnosed with a variety of skin lesions including proliferative ulcerative dermatitis due to protozoa and fungi, dolphin pox and a vesicular dermatopathy of unknown etiology (Bossart et al. 2003). Multiple species from fish to dolphins in the IRL system have exhibited skin lesions of various known and unknown etiologies (Kane et al. 2000; Bossart et al. 2003; Reif et al. 2006). On-going photo-identification (photo-ID) studies have documented skin diseases in IRL dolphins (Mazzoil et al. 2005). In addition, up to 70% of green sea turtles in the IRL exhibit fibropapillomas, with the highest rates of occurrence being seen in turtles from the southern IRL (Hirama 2001).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This project characterized and assessed the condition of coastal water resources in the Dry Tortugas National Park (DRTO) located in the Florida Keys. The goal of the assessment was to: (1) identify the state of knowledge of natural resources that exist within the DRTO, (2) summarize the state of knowledge about natural and anthropogenic stressors and threats that affected these resources, and (3) describe strategies being implemented by DRTO managers to meet their resource management goals. The park, located in the Straits of Florida 113 km (70 miles) west of Key West, is relatively small (269 square kilometers) with seven small islands and extensive shallow water coral reefs. Significant natural resources within DRTO include coastal and oceanic waters, coral reefs, reef fisheries, seagrass beds, and sea turtle and bird nesting habitats. This report focuses on marine natural resources identified by DRTO resource managers and researchers as being vitally important to the Tortugas region and the wider South Florida ecosystem. Selected marine resources included physical resources (geology, oceanography, and water quality) and biological resources (coral reef and hardbottom benthic assemblages, seagrass and algal communities, reef fishes and macro invertebrates, and wildlife [sea turtles and sea-birds]). In the past few decades, some of these resources have deteriorated because of natural and anthropogenic factors that are local and global in scale. To meet mandated goals (Chapter 1), resource managers need information on: (1) the types and condition of natural and cultural resources that occur within the park and (2) the stressors and threats that can affect those resources. This report synthesizes and summarizes information on: (1) the status of marine natural resources occurring at DRTO; and (2) types of stressors and threats currently affecting those resources at the DRTO. Based on published information, the assessment suggests that marine resources at DRTO and its surrounding region are affected by several stressors, many of which act synergistically. Of the nine resource components assessed, one resource category – water quality – received an ecological condition ranking of "Good"; two components – the nonliving portion of coral reef and hardbottom and reef fishes – received a rating of "Caution"; and two components – the biotic components of coral reef and hardbottom substrates and sea turtles – received a rating of "Significant concern" (Table E-1). Seagrass and algal communities and seabirds were unrated for ecological condition because the available information was inadequate. The stressor category of tropical storms was the dominant and most prevalent stressor in the Tortugas region; it affected all of the resource components assessed in this report. Commercial and recreational fishing were also dominant stressors and affected 78% of the resource components assessed. The most stressed resource was the biotic component of coral reef and hardbottom resources, which was affected by 76% of the stressors. Water quality was the least affected; it was negatively affected by 12% of stressors. The systematic assessment of marine natural resources and stressors in the Tortugas region pointed to several gaps in the information. For example, of the nine marine resource components reviewed in this report, the living component of coral reefs and hardbottom resources had the best rated information with 25% of stressor categories rated "Good" for information richness. In contrast, the there was a paucity of information for seagrass and algal communities and sea birds resource components.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

All five species of sea turtles in continental U.S. waters are protected under the Endangered Species Act of 1973 and the population sizes of all species remain well below historic levels. Shrimp trawling was determined to be the largest source of anthropogenic mortality of many of the species. As a mechanism to reduce the incidental catch of turtles in trawl nets, turtle excluder devices have been required intermittently in the shrimp fishery since 1987, and at all times since 1994. The expanded turtle excluder device (TED) regulations, implemented in 1994, were expected to reduce shrimp trawl capture of sea turtles by 97%. Recent evidence has indicated that the sizes of turtles stranding were not representative of the animals subjected to being captured by the shrimp trawlers. The purpose of our study was to compare the sizes of stranded sea turtles with the size of the TED openings. We compared the sizes of stranded loggerhead (Caretta caretta), green (Chelonia mydas), and Kemp’s ridley (Lepidochelys kempii) sea turtles, the three species most commonly found stranded, to the minimum widths and heights of TED openings. We found that annually a large proportion of stranded loggerhead turtles (33–47%) and a small proportion of stranded green turtles (1–7%) are too large to fit through the required minimum-size TED openings. The continued high mortality of sea turtles caused by bottom trawling is reason for concern, especially for the northern subpopulation of loggerhead turtles, which currently is not projected to achieve the federal recovery goal of reaching and maintaining prelisting levels of nesting.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Protracted or intense rainfall may affect the reproductive success of reptilian species on a number of levels ranging from the availability of prey, the integrity of the nesting site and the subsequent survivability of offspring. For sea turtles (a species displaying temperature sex determination) nesting throughout the tropics and subtropics, rainfall has previously been shown to influence the development environment of clutches; in its extreme resulting in high levels of egg or hatchling mortality. Yet when compared to other abiotic variables affecting clutch success, rainfall has received relatively little attention. We therefore examined how fluctuations in local rainfall at a tropical nesting site for leatherback turtles (Dermochelys coriacea) affected the nest environment. Temperature data loggers placed within clutches (n = 8) revealed that protracted rainfall had a marked cooling effect on nests, so that seasonally improbable male-producing temperatures (

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Bonn Convention on the Conservation of Migratory Species of Wild Animals adopted a Resolution in 2005 recognising the impacts of climate change on migratory species. It called on Contracting Parties to undertake more research to improve our understanding of these impacts and to implement adaptation measures to reduce foreseeable adverse effects. Given the large diversity of taxa and species affected by climate change, it is impossible to monitor all species and effects thereof. However, it is likely that many of the key ecological and physical processes through which climate change may impact wildlife could be monitored using a suite of indicators, each comprising parameters of species/populations or groups of species as proxies for wider assemblages, habitats and ecosystems. Herein, we identify a suite of 17 indicators whose attributes could reveal negative impacts of climate change on the global status of migratory species: 4 for birds, 4 for marine mammals, 2 for sea turtles, 1 for fish, 3 for land mammals and 3 for bats. A few of these indicators would be relatively straightforward to develop, but most would require additional data collation, and in many cases methodological development. Choosing and developing indicators of the impacts of climate change on migratory species is a challenge, particularly with endangered species, which are subject to many other pressures. To identify and implement conservation measures for these species, indicators must account for the full ensemble of pressures, and link to a system of alerts and triggers for action.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Durante el 2010, se capturó 55 ejemplares de tortuga verde Chelonia mydas en La Aguada (13°51’S y 76°15’W) al sureste de la bahía de Paracas; el número promedio de tortugas capturadas por kilómetro de red tendida fue 3,08±2,5; el tamaño promedio de la LCC fue 60,3±10,5cm; el 78% de los ejemplares presentaron el patrón 5c, 4d, 4i y 11d, 11i, para los escudos centrales, costales y marginales, respectivamente. La TSM donde se capturaron varió entre 15,2 y 20,9 °C, la mayor ocurrencia de tortugas se registró de 18,5 a 20 °C. Los epibiontes más representativos fueron Platylepas hexastylos (56,8%), Conchoderma virgatum (26,9%) y Chelonibia testudinaria (13,3%); la ocurrencia de los ítems alimenticios: Clorophyta (78%), Rhodophyta (30%), Cnidaria (43%), Crustacea (43%), Polichaeta (17%), Mollusca (17%), arena (26%) y plástico (17%); el 72% de las tortugas presentaron cobertura algal, de las cuales el 65% fue el alga verde Enteromorpha sp.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For seasonal migrants, logistical constraints have often limited conservation efforts to improving survival and reproduction during the breeding season only. Yet, mounting empirical evidence suggests that events occurring throughout the migratory life cycle can critically alter the demography of many migrant species. Herein, we build upon recent syntheses of avian migration research to review the role of non-breeding seasons in determining the population dynamics and fitness of diverse migratory taxa, including salmonid fishes, marine mammals, ungulates, sea turtles, butterflies, and numerous bird groups. We discuss several similarities across these varied migrants: (i) non-breeding survivorship tends to be a strong driver of population growth; (ii) non-breeding events can affect fitness in subsequent seasons through seasonal interactions at individual- and population-levels; (iii) broad-scale climatic influences often alter non-breeding resources and migration timing, and may amplify population impacts through covariation among seasonal vital rates; and (iv) changes to both stationary and migratory non-breeding habitats can have important consequences for abundance and population trends. Finally, we draw on these patterns to recommend that future conservation research for seasonal migrants will benefit from: (1) more explicit recognition of the important parallels among taxonomically diverse migratory animals; (2) an expanded research perspective focused on quantification of all seasonal vital rates and their interactions; and (3) the development of detailed population projection models that account for complexity and uncertainty in migrant population dynamics.