749 resultados para Science and Mathematics education
Resumo:
In this action research study of my classroom of eighth grade mathematics, I investigated the use of manipulatives and its impact on student attitude and understanding. I discovered that overall, students enjoy using manipulatives, not necessarily for the benefit of learning, but because it actively engages them in each lesson. I also found that students did perform better on exams when students were asked to solve problems using manipulatives in place of formal written representations of situations. In the course of this investigation, I also uncovered that student attitude toward mathematics improved when greater manipulative use was infused into the lessons. Students felt more confident that they understood the material, which translated into a better attitude regarding math class. As a result of this research, I plan to find ways to implement manipulatives in my teaching on a more regular basis. I intend to create lessons with manipulatives that will engage both hands and minds for the learners.
Resumo:
In this action research study of my seventh grade mathematics classroom, I investigated what written communication within the mathematics classroom would look like. I increased vocabulary instruction of specific mathematical terms for my students to use in their writing. I also looked at what I would have to do differently in my teaching in order for my students to be successful in their writing. Although my students said that using writing to explain mathematics helped them to better understand the math, my research revealed that student writing did not necessarily translate to improved scores. After direct instruction and practice on math vocabulary, my students did use the vocabulary words more often in their writing; however, my students used the words more like they would in spelling sentences rather than to show what it meant and how it can be applied within their written explanation in math. In my teaching, I discovered I tried many different strategies to help my students be successful. I was very deliberate in my language and usage of vocabulary words and also in my explanations of various math concepts. As a result of this research, I plan to continue having my students use writing to communicate within the mathematics classroom. I will keep using some of the strategies I found successful. I also will be very deliberate in using vocabulary words and stress the use of vocabulary words with my students in the future.
Resumo:
In this action research study of my classroom of 8th grade algebra, I investigated students’ discussion of mathematics and how it relates to interest in the subject. Discussion is a powerful tool in the classroom. By relying too heavily on drill and practice, a teacher may lose any individual student insight into the learning process. However, in order for the discussion to be effective, students must be provided with structure and purpose. It is unrealistic to expect middle school age students to provide their own structure and purpose; a packet was constructed that would allow the students to both show their thoughts and work as a small group toward a common goal. The students showed more interest in the subject in question as they related to the algebra topics being studied. The students appreciated the packets as a way to facilitate discussion rather than as a vehicle for practicing concepts. Students still had a need for practice problems as part of their homework. As a result of this research, it is clear that discussion packets are very useful as a part of daily instruction. While there are modifications that must be made to the original packets to more clearly express the expectations in question, discussion packets will continue to be an effective tool in the classroom.
Resumo:
In this action research study of 55 sophomore and junior students in my Algebra II/Trigonometry classrooms, I investigated a reading strategy of learning mathematics. Students were given background information about reading and explored the benefits of reading for themselves. Next, students were taught to read their textbook, analyzing one section of the textbook at a time. Throughout the research project, students were given reading guides to fill out during class with whole class discussion following the reading time. I discovered that students are able to read a mathematics textbook with understanding and students who are gone for activities can learn independently. Teacher observations, student surveys, and student interviews provide quantitative evidence of increased student understanding and achievement. As a result of this research, I plan to continue utilizing the reading guides and incorporating reading as a method of learning mathematics within my classrooms.
Resumo:
Let (R,m) be a local complete intersection, that is, a local ring whose m-adic completion is the quotient of a complete regular local ring by a regular sequence. Let M and N be finitely generated R-modules. This dissertation concerns the vanishing of Tor(M, N) and Ext(M, N). In this context, M satisfies Serre's condition (S_{n}) if and only if M is an nth syzygy. The complexity of M is the least nonnegative integer r such that the nth Betti number of M is bounded by a polynomial of degree r-1 for all sufficiently large n. We use this notion of Serre's condition and complexity to study the vanishing of Tor_{i}(M, N). In particular, building on results of C. Huneke, D. Jorgensen and R. Wiegand [32], and H. Dao [21], we obtain new results showing that good depth properties on the R-modules M, N and MtensorN force the vanishing of Tor_{i}(M, N) for all i>0. We give examples showing that our results are sharp. We also show that if R is a one-dimensional domain and M and MtensorHom(M,R) are torsion-free, then M is free if and only if M has complexity at most one. If R is a hypersurface and Ext^{i}(M, N) has finite length for all i>>0, then the Herbrand difference [18] is defined as length(Ext^{2n}(M, N))-(Ext^{2n-1}(M, N)) for some (equivalently, every) sufficiently large integer n. In joint work with Hailong Dao, we generalize and study the Herbrand difference. Using the Grothendieck group of finitely generated R-modules, we also examined the number of consecutive vanishing of Ext^{i}(M, N) needed to ensure that Ext^{i}(M, N) = 0 for all i>>0. Our results recover and improve on most of the known bounds in the literature, especially when R has dimension two.
Resumo:
As with many organisms across the globe, Cicindela nevadica lincolniana is threatened with extinction. Understanding ecological factors that contribute to extinction vulnerability and what methods aid in the recovery of those species is essential in developing successful conservation programs. Here we examine behavioral mechanisms for niche partitioning along with improving techniques for captive rearing protocol and increasing public awareness about the conservation of this local insect. Ovipositional selectivity was examined for Cicindela nevadica lincolniana, Cicindela circumpicta, Cicindela togata, Cicindela punctulata, and Cicindela fulgida. Models reflect that these species of co-occurring tiger beetles select different ranges of salinity in which to oviposit thereby reducing the potential for interspecific competition. In a second study, thermoregulatory niche partitioning was examined for the same complex of tiger beetle species. Time spent in the sun, on different substrates, and engaging in various behaviors associated with thermoregulation were significantly different during different parts of the day and between species. I continued along a previous line of study to develop a viable captive rearing program. So far fourteen adult Cicindela nevadica lincolniana have been successfully reared in captivity. Overwintering mortality has been determined as a key factor in the mortality of this species in captivity. Finally, I examined the potential for using the visual arts to promote the conservation of Cicindela nevadica lincolniana and associated saline wetlands. The results from surveys conducted at the exhibit suggest that art exhibits can have a strong positive impact on members of the community.
Resumo:
The purpose of this research was to assess preservice teachers self-efficacy at different stages of their educational career in an attempt to determine the extent to which self-efficacy beliefs may change over time. In addition, the critical incidents, which may contribute to changes in self-efficacy, were also investigated. The instrument used in the study was the Teaching Science as Inquiry (TSI) Instrument. The TSI Instrument was administered to 38 preservice elementary teachers to measure the self-efficacy beliefs of the teacher participants in regard to the teaching of science as inquiry. Based on the results and the associated data analysis, mean and median values demonstrate positive change for self-efficacy and outcome expectancy throughout the data collection period.
Resumo:
The purpose of this project was to investigate the effect of using of data collection technology on student attitudes towards science instruction. The study was conducted over the course of two years at Madison High School in Adrian, Michigan, primarily in college preparatory physics classes, but also in one college preparatory chemistry class and one environmental science class. A preliminary study was conducted at a Lenawee County Intermediate Schools student summer environmental science day camp. The data collection technology used was a combination of Texas Instruments TI-84 Silver Plus graphing calculators and Vernier LabPro data collection sleds with various probeware attachments, including motion sensors, pH probes and accelerometers. Students were given written procedures for most laboratory activities and were provided with data tables and analysis questions to answer about the activities. The first year of the study included a pretest and posttest measuring student attitudes towards the class they were enrolled in. Pre-test and post-test data were analyzed to determine effect size, which was found to be very small (Coe, 2002). The second year of the study focused only on a physics class and used Keller’s ARCS model for measuring student motivation based on the four aspects of motivation: Attention, Relevance, Confidence and Satisfaction (Keller, 2010). According to this model, it was found that there were two distinct groups in the class, one of which was motivated to learn and the other that was not. The data suggest that the use of data collection technology in science classes should be started early in a student’s career, possibly in early middle school or late elementary. This would build familiarity with the equipment and allow for greater exploration by the student as they progress through high school and into upper level science courses.
Resumo:
Project-based education and portfolio assessments are at the forefront of educational research. This research follows the implementation of a project-based unit in a high school physics class. Students played the role of an engineering firm who designed, built and tested file folder bridges. The purpose was to determine if projectbased learning could improve student attitude toward science and related careers like engineering. Teams of students presented their work in a portfolio for a final assessment of the process of designing, building and testing their bridges.
Resumo:
This study investigated the use of real-world contexts during instruction in a high school physics class - through building file folder bridges- and the resulting effect upon student interest in the subject matter, level of understanding, and degree of retention. In particular, the study focused upon whether increases in student interest were attained through the use of real-world contexts, and if the elevated interest level led to a higher degree of subject matter understanding than would be achieved using more traditional teaching methods. The study also determined whether using real-world contexts ultimately resulted in achievement of greater levels of knowledge retention by students. Class observations during traditionally taught units and during units that incorporated real-world contexts, along with a post-graduation questionnaire, were used to assess differences in student interest levels. Student pre- and post-unit test scores were evaluated and compared to determine if statistical differences existed in levels of understanding resulting from the different teaching methods. The post-graduation questionnaire results provided evidence of retention that could be related back to teaching methods. The results of this study revealed the importance of incorporating real-world contexts into science and mathematics courses. Students better understood the relevance of the lessons, which led to higher levels of interest and greater understanding than was achieved through more traditional teaching methods. The use of real-world contexts improved knowledge retention.
Resumo:
This research project measured the effects of real-world content in a science classroom by determining change (deep knowledge of life science content, including ecosystems from MDE – Grade Level Content Expectations) in a subset of students (6th Grade Science) that may result from the addition of curriculum (real-world content of rearing trout in the classroom). Data showed large gains from the pre-test to post-test in students from both the experimental and control groups. The ecology unit with the implementation of real-world content [trout] was even more successful, and improved students’ deep knowledge of ecosystem content from Michigan’s Department of Education Grade Level Content Expectations. The gains by the experimental group on the constructed response section of the test, which included higher cognitive level items, were significant. Clinical interviews after the post-test confirmed increases in deep knowledge of ecosystem concepts in the experimental group, by revealing that a sample of experimental group students had a better grasp of important ecology concepts as compared to a sample of control group students.
Resumo:
This report shares my efforts in developing a solid unit of instruction that has a clear focus on student outcomes. I have been a teacher for 20 years and have been writing and revising curricula for much of that time. However, most has been developed without the benefit of current research on how students learn and did not focus on what and how students are learning. My journey as a teacher has involved a lot of trial and error. My traditional method of teaching is to look at the benchmarks (now content expectations) to see what needs to be covered. My unit consists of having students read the appropriate sections in the textbook, complete work sheets, watch a video, and take some notes. I try to include at least one hands-on activity, one or more quizzes, and the traditional end-of-unit test consisting mostly of multiple choice questions I find in the textbook. I try to be engaging, make the lessons fun, and hope that at the end of the unit my students get whatever concepts I‘ve presented so that we can move on to the next topic. I want to increase students‘ understanding of science concepts and their ability to connect understanding to the real-world. However, sometimes I feel that my lessons are missing something. For a long time I have wanted to develop a unit of instruction that I know is an effective tool for the teaching and learning of science. In this report, I describe my efforts to reform my curricula using the “Understanding by Design” process. I want to see if this style of curriculum design will help me be a more effective teacher and if it will lead to an increase in student learning. My hypothesis is that this new (for me) approach to teaching will lead to increased understanding of science concepts among students because it is based on purposefully thinking about learning targets based on “big ideas” in science. For my reformed curricula I incorporate lessons from several outstanding programs I‘ve been involved with including EpiCenter (Purdue University), Incorporated Research Institutions for Seismology (IRIS), the Master of Science Program in Applied Science Education at Michigan Technological University, and the Michigan Association for Computer Users in Learning (MACUL). In this report, I present the methodology on how I developed a new unit of instruction based on the Understanding by Design process. I present several lessons and learning plans I‘ve developed for the unit that follow the 5E Learning Cycle as appendices at the end of this report. I also include the results of pilot testing of one of lessons. Although the lesson I pilot-tested was not as successful in increasing student learning outcomes as I had anticipated, the development process I followed was helpful in that it required me to focus on important concepts. Conducting the pilot test was also helpful to me because it led me to identify ways in which I could improve upon the lesson in the future.
Resumo:
MiTEP, the Michigan Teacher Excellence Program, provides current teachers the opportunity to partner with Michigan Technological University to obtain graduate credit towards a Master’s degree in applied science education. In exchange, the university collects data on the implementation of inquiry and earth science concepts into science classrooms. This paper documents my experience within this program, including how it has affected my personal and professional learning.
Resumo:
Part I What makes science hard for newcomers? 1) The background (briefly) of my research - (why the math anxiety model doesn’t fit) 2) The Tier analysis (a visual) – message: there are many types of science learners in your class than simply younger versions of yourself 3) Three approaches (bio, chem, physics) but only one Nature 4) The (different) vocabularies of the three Sciences 5) How mathematics is variously used in Science Part II Rules and rules-driven assignments- lQ vs OQ1) How to incorporate creativity into assignments and tests? 2) Tests- borrowing “thought questions" from other fields (If Columbus hadn't discovered the new World, when and under whose law would it have been discovered?) 3) Grading practices (partial credit, post-exam credit for finding and explaining nontrivial errors 4) Icing on the cake – applications, examples of science/engineering from Tuesdays NY Times Part III Making Change at the Departmental Level 1) Taking control of at least some portion of the curriculum 2) Varying style of presentation 3) Taking control of at least some portion of the exams 4) GRADING pros and cons of grading on a curve 5) Updating labs and lab reporting.
Resumo:
This study investigated the effect that the video game Portal 2 had on students understanding of Newton’s Laws and their attitudes towards learning science during a two-week afterschool program at a science museum. Using a pre/posttest and survey design, along with instructor observations, the results showed a statistically relevant increase in understanding of Newton’s Laws (p=.02<.05) but did not measure a relevant change in attitude scores. The data and observations suggest that future research should pay attention to non-educational aspects of video games, be careful about the amount of time students spend in the game, and encourage positive relationships with game developers.