984 resultados para Schur multipliers, operator multipliers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A finite element method for solving multidimensional population balance systems is proposed where the balance of fluid velocity, temperature and solute partial density is considered as a two-dimensional system and the balance of particle size distribution as a three-dimensional one. The method is based on a dimensional splitting into physical space and internal property variables. In addition, the operator splitting allows to decouple the equations for temperature, solute partial density and particle size distribution. Further, a nodal point based parallel finite element algorithm for multi-dimensional population balance systems is presented. The method is applied to study a crystallization process assuming, for simplicity, a size independent growth rate and neglecting agglomeration and breakage of particles. Simulations for different wall temperatures are performed to show the effect of cooling on the crystal growth. Although the method is described in detail only for the case of d=2 space and s=1 internal property variables it has the potential to be extendable to d+s variables, d=2, 3 and s >= 1. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a contraction P and a bounded commutant S of P. we seek a solution X of the operator equation S - S*P = (1 - P* P)(1/2) X (1 - P* P)(1/2) where X is a bounded operator on (Ran) over bar (1 - P* P)(1/2) with numerical radius of X being not greater than 1. A pair of bounded operators (S, P) which has the domain Gamma = {(z(1) + z(2), z(2)): vertical bar z(1)vertical bar < 1, vertical bar z(2)vertical bar <= 1} subset of C-2 as a spectral set, is called a P-contraction in the literature. We show the existence and uniqueness of solution to the operator equation above for a Gamma-contraction (S, P). This allows us to construct an explicit Gamma-isometric dilation of a Gamma-contraction (S, P). We prove the other way too, i.e., for a commuting pair (S, P) with parallel to P parallel to <= 1 and the spectral radius of S being not greater than 2, the existence of a solution to the above equation implies that (S, P) is a Gamma-contraction. We show that for a pure F-contraction (S, P), there is a bounded operator C with numerical radius not greater than 1, such that S = C + C* P. Any Gamma-isometry can be written in this form where P now is an isometry commuting with C and C. Any Gamma-unitary is of this form as well with P and C being commuting unitaries. Examples of Gamma-contractions on reproducing kernel Hilbert spaces and their Gamma-isometric dilations are discussed. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, the mechanical behaviour of CSM (chopped strand mat)-based GFRC (glass fibre-reinforced composite) plates with single and multiple hemispheres under compressive loads has been investigated both experimentally and numerically. The basic stress-strain behaviours arc identified with quasi-static tests on two-ply coupon laminates and short cylinders, and these are followed up with compressive tests in a UTM (universal testing machine) on single- and multiple-hemisphere plates. The ability of an explicit LS-DYNA solver in predicting the complex material behaviour of composite hemispheres, including failure, is demonstrated. The relevance and scalability of the present class of structural components as `force-multipliers' and `energy-multipliers' have been justified by virtue of findings that as the number of hemispheres in a panel increased from one to four, peak load and average absorbed energy rose by factors of approximately four and six, respectively. The performance of a composite hemisphere has been compared to similar-sized steel and aluminium hemispheres, and the former is found to be of distinctly higher specific energy than the steel specimen. A simulation-based study has also been carried out on a composite 2 x 2-hemisphere panel under impact loads and its behaviour approaching that of an ideal energy absorber has been predicted. In summary, the present investigation has established the efficacy of composite plates with hemispherical force multipliers as potential energy-absorbing countermeasures and the suitability of CAE (computer-aided engineering) for their design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a heterogeneous finite element method for the solution of a high-dimensional population balance equation, which depends both the physical and the internal property coordinates. The proposed scheme tackles the two main difficulties in the finite element solution of population balance equation: (i) spatial discretization with the standard finite elements, when the dimension of the equation is more than three, (ii) spurious oscillations in the solution induced by standard Galerkin approximation due to pure advection in the internal property coordinates. The key idea is to split the high-dimensional population balance equation into two low-dimensional equations, and discretize the low-dimensional equations separately. In the proposed splitting scheme, the shape of the physical domain can be arbitrary, and different discretizations can be applied to the low-dimensional equations. In particular, we discretize the physical and internal spaces with the standard Galerkin and Streamline Upwind Petrov Galerkin (SUPG) finite elements, respectively. The stability and error estimates of the Galerkin/SUPG finite element discretization of the population balance equation are derived. It is shown that a slightly more regularity, i.e. the mixed partial derivatives of the solution has to be bounded, is necessary for the optimal order of convergence. Numerical results are presented to support the analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We characterise higher order Riesz transforms on the Heisenberg group and also show that they satisfy dimension-free bounds under some assumptions on the multipliers. Using transference theorems, we deduce boundedness theorems for Riesz transforms on the reduced Heisenberg group and hence also for the Riesz transforms associated to multiple Hermite and Laguerre expansions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce the defect sequence for a contractive tuple of Hilbert space operators and investigate its properties. The defect sequence is a sequence of numbers, called defect dimensions associated with a contractive tuple. We show that there are upper bounds for the defect dimensions. The tuples for which these upper bounds are obtained, are called maximal contractive tuples. The upper bounds are different in the non-commutative and in the commutative case. We show that the creation operators on the full Fock space and the coordinate multipliers on the Drury-Arveson space are maximal. We also study pure tuples and see how the defect dimensions play a role in their irreducibility. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Service systems are labor intensive. Further, the workload tends to vary greatly with time. Adapting the staffing levels to the workloads in such systems is nontrivial due to a large number of parameters and operational variations, but crucial for business objectives such as minimal labor inventory. One of the central challenges is to optimize the staffing while maintaining system steady-state and compliance to aggregate SLA constraints. We formulate this problem as a parametrized constrained Markov process and propose a novel stochastic optimization algorithm for solving it. Our algorithm is a multi-timescale stochastic approximation scheme that incorporates a SPSA based algorithm for ‘primal descent' and couples it with a ‘dual ascent' scheme for the Lagrange multipliers. We validate this optimization scheme on five real-life service systems and compare it with a state-of-the-art optimization tool-kit OptQuest. Being two orders of magnitude faster than OptQuest, our scheme is particularly suitable for adaptive labor staffing. Also, we observe that it guarantees convergence and finds better solutions than OptQuest in many cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An operator-splitting finite element method for solving high-dimensional parabolic equations is presented. The stability and the error estimates are derived for the proposed numerical scheme. Furthermore, two variants of fully-practical operator-splitting finite element algorithms based on the quadrature points and the nodal points, respectively, are presented. Both the quadrature and the nodal point based operator-splitting algorithms are validated using a three-dimensional (3D) test problem. The numerical results obtained with the full 3D computations and the operator-split 2D + 1D computations are found to be in a good agreement with the analytical solution. Further, the optimal order of convergence is obtained in both variants of the operator-splitting algorithms. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The GW approximation to the electron self-energy has become a standard method for ab initio calculation of excited-state properties of condensed-matter systems. In many calculations, the G W self-energy operator, E, is taken to be diagonal in the density functional theory (DFT) Kohn-Sham basis within the G0 W0 scheme. However, there are known situations in which this diagonal Go Wo approximation starting from DFT is inadequate. We present two schemes to resolve such problems. The first, which we called sc-COHSEX-PG W, involves construction of an improved mean field using the static limit of GW, known as COHSEX (Coulomb hole and screened exchange), which is significantly simpler to treat than GW W. In this scheme, frequency-dependent self energy E(N), is constructed and taken to be diagonal in the COHSEX orbitals after the system is solved self-consistently within this formalism. The second method is called off diagonal-COHSEX G W (od-COHSEX-PG W). In this method, one does not self-consistently change the mean-field starting point but diagonalizes the COHSEX Hamiltonian within the Kohn-Sham basis to obtain quasiparticle wave functions and uses the resulting orbitals to construct the G W E in the diagonal form. We apply both methods to a molecular system, silane, and to two bulk systems, Si and Ge under pressure. For silane, both methods give good quasiparticle wave functions and energies. Both methods give good band gaps for bulk silicon and maintain good agreement with experiment. Further, the sc-COHSEX-PGW method solves the qualitatively incorrect DFT mean-field starting point (having a band overlap) in bulk Ge under pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let G = -Delta(xi) - vertical bar xi vertical bar(2) partial derivative(2)/partial derivative eta(2) be the Grushin operator on R-n x R. We prove that the Riesz transforms associated to this operator are bounded on L-p(Rn+1), 1 < p < infinity, and their norms are independent of dimension n.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intersection of the ten-dimensional fuzzy conifold Y-F(10) with S-F(5) x S-F(5) is the compact eight-dimensional fuzzy space X-F(8). We show that X-F(8) is (the analogue of) a principal U(1) x U(1) bundle over fuzzy SU(3) / U(1) x U(1)) ( M-F(6)). We construct M-F(6) using the Gell-Mann matrices by adapting Schwinger's construction. The space M-F(6) is of relevance in higher dimensional quantum Hall effect and matrix models of D-branes. Further we show that the sections of the monopole bundle can be expressed in the basis of SU(3) eigenvectors. We construct the Dirac operator on M-F(6) from the Ginsparg-Wilson algebra on this space. Finally, we show that the index of the Dirac operator correctly reproduces the known results in the continuum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a C-0 interior penalty method has been proposed and analyzed for distributed optimal control problems governed by the biharmonic operator. The state and adjoint variables are discretized using continuous piecewise quadratic finite elements while the control variable is discretized using piecewise constant approximations. A priori and a posteriori error estimates are derived for the state, adjoint and control variables under minimal regularity assumptions. Numerical results justify the theoretical results obtained. The a posteriori error estimators are useful in adaptive finite element approximation and the numerical results indicate that the sharp error estimators work efficiently in guiding the mesh refinement. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove that the solution of the wave equation associated to the Grushin operator G = -Delta -vertical bar x vertical bar(2)partial derivative(2)(t) is bounded on L-P (Rn+1), with 1 < p < infinity, when vertical bar 1/p - 1/2 vertical bar < 1/n+2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A direct discretization approach and an operator-splitting scheme are applied for the numerical simulation of a population balance system which models the synthesis of urea with a uni-variate population. The problem is formulated in axisymmetric form and the setup is chosen such that a steady state is reached. Both solvers are assessed with respect to the accuracy of the results, where experimental data are used for comparison, and the efficiency of the simulations. Depending on the goal of simulations, to track the evolution of the process accurately or to reach the steady state fast, recommendations for the choice of the solver are given. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a new method for studying universality of random matrices. Let T-n be the Jacobi matrix associated to the Dyson beta ensemble with uniformly convex polynomial potential. We show that after scaling, Tn converges to the stochastic Airy operator. In particular, the top edge of the Dyson beta ensemble and the corresponding eigenvectors are universal. As a byproduct, these ideas lead to conjectured operator limits for the entire family of soft edge distributions. (C) 2015 Wiley Periodicals, Inc.