239 resultados para Schindler
Resumo:
CONTEXT: It is uncertain whether intensified heart failure therapy guided by N-terminal brain natriuretic peptide (BNP) is superior to symptom-guided therapy. OBJECTIVE: To compare 18-month outcomes of N-terminal BNP-guided vs symptom-guided heart failure therapy. DESIGN, SETTING, AND PATIENTS: Randomized controlled multicenter Trial of Intensified vs Standard Medical Therapy in Elderly Patients With Congestive Heart Failure (TIME-CHF) of 499 patients aged 60 years or older with systolic heart failure (ejection fraction < or = 45%), New York Heart Association (NYHA) class of II or greater, prior hospitalization for heart failure within 1 year, and N-terminal BNP level of 2 or more times the upper limit of normal. The study had an 18-month follow-up and it was conducted at 15 outpatient centers in Switzerland and Germany between January 2003 and June 2008. INTERVENTION: Uptitration of guideline-based treatments to reduce symptoms to NYHA class of II or less (symptom-guided therapy) and BNP level of 2 times or less the upper limit of normal and symptoms to NYHA class of II or less (BNP-guided therapy). MAIN OUTCOME MEASURES: Primary outcomes were 18-month survival free of all-cause hospitalizations and quality of life as assessed by structured validated questionnaires. RESULTS: Heart failure therapy guided by N-terminal BNP and symptom-guided therapy resulted in similar rates of survival free of all-cause hospitalizations (41% vs 40%, respectively; hazard ratio [HR], 0.91 [95% CI, 0.72-1.14]; P = .39). Patients' quality-of-life metrics improved over 18 months of follow-up but these improvements were similar in both the N-terminal BNP-guided and symptom-guided strategies. Compared with the symptom-guided group, survival free of hospitalization for heart failure, a secondary end point, was higher among those in the N-terminal BNP-guided group (72% vs 62%, respectively; HR, 0.68 [95% CI, 0.50-0.92]; P = .01). Heart failure therapy guided by N-terminal BNP improved outcomes in patients aged 60 to 75 years but not in those aged 75 years or older (P < .02 for interaction) CONCLUSION: Heart failure therapy guided by N-terminal BNP did not improve overall clinical outcomes or quality of life compared with symptom-guided treatment. TRIAL REGISTRATION: isrctn.org Identifier: ISRCTN43596477.
Resumo:
OBJECTIVE: In ictal scalp electroencephalogram (EEG) the presence of artefacts and the wide ranging patterns of discharges are hurdles to good diagnostic accuracy. Quantitative EEG aids the lateralization and/or localization process of epileptiform activity. METHODS: Twelve patients achieving Engel Class I/IIa outcome following temporal lobe surgery (1 year) were selected with approximately 1-3 ictal EEGs analyzed/patient. The EEG signals were denoised with discrete wavelet transform (DWT), followed by computing the normalized absolute slopes and spatial interpolation of scalp topography associated to detection of local maxima. For localization, the region with the highest normalized absolute slopes at the time when epileptiform activities were registered (>2.5 times standard deviation) was designated as the region of onset. For lateralization, the cerebral hemisphere registering the first appearance of normalized absolute slopes >2.5 times the standard deviation was designated as the side of onset. As comparison, all the EEG episodes were reviewed by two neurologists blinded to clinical information to determine the localization and lateralization of seizure onset by visual analysis. RESULTS: 16/25 seizures (64%) were correctly localized by the visual method and 21/25 seizures (84%) by the quantitative EEG method. 12/25 seizures (48%) were correctly lateralized by the visual method and 23/25 seizures (92%) by the quantitative EEG method. The McNemar test showed p=0.15 for localization and p=0.0026 for lateralization when comparing the two methods. CONCLUSIONS: The quantitative EEG method yielded significantly more seizure episodes that were correctly lateralized and there was a trend towards more correctly localized seizures. SIGNIFICANCE: Coupling DWT with the absolute slope method helps clinicians achieve a better EEG diagnostic accuracy.
Resumo:
ims: Periodic leg movements in sleep (PLMS) are a frequent finding in polysomnography. Most patients with restless legs syndrome (RLS) display PLMS. However, since PLMS are also often recorded in healthy elderly subjects, the clinical significance of PLMS is still discussed controversially. Leg movements are seen concurrently with arousals in obstructive sleep apnoea (OSA) may also appear periodically. Quantitative assessment of the periodicity of LM/PLM as measured by inter movement intervals (IMI) is difficult. This is mainly due to influencing factors like sleep architecture and sleep stage, medication, inter and intra patient variability, the arbitrary amplitude and sequence criteria which tend to broaden the IMI distributions or make them even multi-modal. Methods: Here a statistical method is presented that enables eliminating such effects from the raw data before analysing the statistics of IMI. Rather than studying the absolute size of IMI (measured in seconds) we focus on the shape of their distribution (suitably normalized IMI). To this end we employ methods developed in Random Matrix Theory (RMT). Patients: The periodicity of leg movements (LM) of four patient groups (10 to 15 each) showing LM without PLMS (group 1), OSA without PLMS (group 2), PLMS and OSA (group 3) as well as PLMS without OSA (group 4) are compared. Results: The IMI of patients without PLMS (groups 1 and 2) and with PLMS (groups 3 and 4) are statistically different. In patients without PLMS the distribution of normalized IMI resembles closely the one of random events. In contrary IMI of PLMS patients show features of periodic systems (e.g. a pendulum) when studied in normalized manner. Conclusions: For quantifying PLMS periodicity proper normalization of the IMI is crucial. Without this procedure important features are hidden when grouping LM/PLM over whole nights or across patients. The clinical significance of PLMS might be eluded when properly separating random LM from LM that show features of periodic systems.
Resumo:
Rationale: Focal onset epileptic seizures are due to abnormal interactions between distributed brain areas. By estimating the cross-correlation matrix of multi-site intra-cerebral EEG recordings (iEEG), one can quantify these interactions. To assess the topology of the underlying functional network, the binary connectivity matrix has to be derived from the cross-correlation matrix by use of a threshold. Classically, a unique threshold is used that constrains the topology [1]. Our method aims to set the threshold in a data-driven way by separating genuine from random cross-correlation. We compare our approach to the fixed threshold method and study the dynamics of the functional topology. Methods: We investigate the iEEG of patients suffering from focal onset seizures who underwent evaluation for the possibility of surgery. The equal-time cross-correlation matrices are evaluated using a sliding time window. We then compare 3 approaches assessing the corresponding binary networks. For each time window: * Our parameter-free method derives from the cross-correlation strength matrix (CCS)[2]. It aims at disentangling genuine from random correlations (due to finite length and varying frequency content of the signals). In practice, a threshold is evaluated for each pair of channels independently, in a data-driven way. * The fixed mean degree (FMD) uses a unique threshold on the whole connectivity matrix so as to ensure a user defined mean degree. * The varying mean degree (VMD) uses the mean degree of the CCS network to set a unique threshold for the entire connectivity matrix. * Finally, the connectivity (c), connectedness (given by k, the number of disconnected sub-networks), mean global and local efficiencies (Eg, El, resp.) are computed from FMD, CCS, VMD, and their corresponding random and lattice networks. Results: Compared to FMD and VMD, CCS networks present: *topologies that are different in terms of c, k, Eg and El. *from the pre-ictal to the ictal and then post-ictal period, topological features time courses that are more stable within a period, and more contrasted from one period to the next. For CCS, pre-ictal connectivity is low, increases to a high level during the seizure, then decreases at offset. k shows a ‘‘U-curve’’ underlining the synchronization of all electrodes during the seizure. Eg and El time courses fluctuate between the corresponding random and lattice networks values in a reproducible manner. Conclusions: The definition of a data-driven threshold provides new insights into the topology of the epileptic functional networks.