977 resultados para Scalable Nanofabrication


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Circuit quantum electrodynamics, consisting of superconducting artificial atoms coupled to on-chip resonators, represents a prime candidate to implement the scalable quantum computing architecture because of the presence of good tunability and controllability. Furthermore, recent advances have pushed the technology towards the ultrastrong coupling regime of light-matter interaction, where the qubit-resonator coupling strength reaches a considerable fraction of the resonator frequency. Here, we propose a qubit-resonator system operating in that regime, as a quantum memory device and study the storage and retrieval of quantum information in and from the Z(2) parity-protected quantum memory, within experimentally feasible schemes. We are also convinced that our proposal might pave a way to realize a scalable quantum random-access memory due to its fast storage and readout performances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a novel semiconductor optical amplifier (SOA) based switch architecture for analog applications. Proof-of-principle experiments show that the system is very linear with an SFDR of approximately 100dB·Hz 2/3 for a switching time of 50μs. The port number of this switch is scalable and can be expanded to 80 × 80.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a self-forwarding packet-switched optical network with bit-parallel multi-wavelength labels. We experimentally demonstrate transmission of variable-length optical packets over 80 km of fiber and switching over a 1×4 multistage switch with two stages. © 2007 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cambridge Flow Solutions Ltd, Compass House, Vision Park, Cambridge, CB4 9AD, UK Real-world simulation challenges are getting bigger: virtual aero-engines with multistage blade rows coupled with their secondary air systems & with fully featured geometry; environmental flows at meta-scales over resolved cities; synthetic battlefields. It is clear that the future of simulation is scalable, end-to-end parallelism. To address these challenges we have reported in a sequence of papers a series of inherently parallel building blocks based on the integration of a Level Set based geometry kernel with an octree-based cut-Cartesian mesh generator, RANS flow solver, post-processing and geometry management & editing. The cut-cells which characterize the approach are eliminated by exporting a body-conformal mesh driven by the underpinning Level Set and managed by mesh quality optimization algorithms; this permits third party flow solvers to be deployed. This paper continues this sequence by reporting & demonstrating two main novelties: variable depth volume mesh refinement enabling variable surface mesh refinement and a radical rework of the mesh generation into a bottom-up system based on Space Filling Curves. Also reported are the associated extensions to body-conformal mesh export. Everything is implemented in a scalable, parallel manner. As a practical demonstration, meshes of guaranteed quality are generated for a fully resolved, generic aircraft carrier geometry, a cooled disc brake assembly and a B747 in landing configuration. Copyright © 2009 by W.N.Dawes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The background to this review paper is research we have performed over recent years aimed at developing a simulation system capable of handling large scale, real world applications implemented in an end-to-end parallel, scalable manner. The particular focus of this paper is the use of a Level Set solid modeling geometry kernel within this parallel framework to enable automated design optimization without topological restrictions and on geometries of arbitrary complexity. Also described is another interesting application of Level Sets: their use in guiding the export of a body-conformal mesh from our basic cut-Cartesian background octree - mesh - this permits third party flow solvers to be deployed. As a practical demonstrations meshes of guaranteed quality are generated and flow-solved for a B747 in full landing configuration and an automated optimization is performed on a cooled turbine tip geometry. Copyright © 2009 by W.N.Dawes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown in the paper how robustness can be guaranteed for consensus protocols with heterogeneous dynamics in a scalable and decentralized way i.e. by each agent satisfying a test that does not require knowledge of the entire network. Random graph examples illustrate that the proposed certificates are not conservative for classes of large scale networks, despite the heterogeneity of the dynamics, which is a distinctive feature of this work. The conditions hold for symmetric protocols and more conservative stability conditions are given for general nonsymmetric interconnections. Nonlinear extensions in an IQC framework are finally discussed. Copyright © 2005 IFAC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe simple yet scalable and distributed algorithms for solving the maximum flow problem and its minimum cost flow variant, motivated by problems of interest in objects similarity visualization. We formulate the fundamental problem as a convex-concave saddle point problem. We then show that this problem can be efficiently solved by a first order method or by exploiting faster quasi-Newton steps. Our proposed approach costs at most O(|ε|) per iteration for a graph with |ε| edges. Further, the number of required iterations can be shown to be independent of number of edges for the first order approximation method. We present experimental results in two applications: mosaic generation and color similarity based image layouting. © 2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complementary in situ X-ray photoelectron spectroscopy (XPS), X-ray diffractometry, and environmental scanning electron microscopy are used to fingerprint the entire graphene chemical vapor deposition process on technologically important polycrystalline Cu catalysts to address the current lack of understanding of the underlying fundamental growth mechanisms and catalyst interactions. Graphene forms directly on metallic Cu during the high-temperature hydrocarbon exposure, whereby an upshift in the binding energies of the corresponding C1s XPS core level signatures is indicative of coupling between the Cu catalyst and the growing graphene. Minor carbon uptake into Cu can under certain conditions manifest itself as carbon precipitation upon cooling. Postgrowth, ambient air exposure even at room temperature decouples the graphene from Cu by (reversible) oxygen intercalation. The importance of these dynamic interactions is discussed for graphene growth, processing, and device integration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A variety of devices at nanometer scale / molecular scale for electronic, photonics, optoelectronics, biological and mechanical applications have been created through a rapid development of materials and fabrication technology. Further development of nanodevices strongly depends on the state-of-the-art knowledge of science and technology at the sub-100nm length scale. This symposium proceedings serves as a nice platform on which scientists and engineers can present and highlight some of the key advances in the following topics: Electronic and optoelectronic devices of nanometer scale / molecular scale. Nanomechanics and NEMS. Electromechanical coupled devices. Manipulation and aligning processes at nanometer scale / molecular scale. Quantum phenomena. Modeling of nanodevices and nanostructures. Fabrication and property characterization of nanodevices. Nanofabrication with focused beam technology, e.g., focused ion beam, laser and proton beam. © 2012 by Pan Stanford Publishing Pte. Ltd. All rights reserved.