900 resultados para Salt marsh and semi-arid
Resumo:
This study aimed to identify antioxidant peptides from caprine casein hydrolysates by papain application using MALDI-TOF mass spectrometer, and a 2² full factorial design, with 4 axial points, in order to evaluate kinetic parameters (time and pH) effects on the degree of hydrolysis as well as the antioxidant activity of Moxotó goat milk casein peptides. Degree of hydrolysis was determined by total and soluble protein ratio in casein. Antioxidant activity was measured by ABTS method with 2, 2-cation-azinobis (3-ethylbenzothiazoline-6-sulfonic acid). TROLOX was used as standard. Peptide pattern and sequence of antioxidant amino acids were obtained using MALDI-TOF/MS. The highest degree of hydrolysis (28.5%) and antioxidant activity (2329.6 mmol.L TROLOX. mg- 1 peptide) were observed in the permeate. NENLL, NPWDQVK and LLYQEPVLGPV peptides, detected in the permeate, were pointed as the responsible for antioxidant activity, suggesting their potential application as food supplement and pharmaceutical products.
Resumo:
More than half of global soil carbon is stored as carbonates, primarily in arid and semi-arid zones. Climate change models predict more frequent and severe rainfall events in some parts of the globe, many of which are dominated by calcareous soils. Such events trigger substantial increases in soil CO2 efflux. We hypothesised that the primary source of CO2 emissions from calcareous, arid zone soil during a single wetting event is abiotic and that soil acidification and wetting have a positive, potentially interacting, effect. We manipulated soil pH, soil moisture, and controlled soil respiration by gamma irradiating half of an 11 day incubation experiment. All manipulated experimental treatments had a rapid and enormous effect on CO2 emission. Respiration contributed ca. 5% of total CO2 efflux; the major source (carbonate buffering) varied depending on the extent of acidification and wetting. Maximum CO2 efflux occurred when pH was lowest and at intermediate matric potential. CO2 efflux was lowest at native pH when soil was air dry. Our data suggest that there may be an underestimate of soil-atmosphere carbon fluxes in arid ecosystems with calcareous soils. There is also a clear potential that these soils may become net carbon sources depending on changes in rainfall patterns, rainfall acidity, and future land management. Our findings have major implications for carbon cycling in arid zone soil and further study of carbon dynamics in these terrestrial systems at a landscape level will be required if we are to improve global climate and carbon cycling models.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The operational details of the apparent electrical conductivity (ECa) sensor manufactured by Veris Technologies have been extensively documented in literature reports, but the geographical distribution of these research studies indicate a strong regional concentration in the US Mid-west and Southern states. The agricultural lands of these states diverge significantly to the soil conditions and water regime of irrigated land in the US South-western states such as Arizona where there is no previous research reports of the use of this particular sensor. The objectives of the present study were to analyze the performance of this sensor under the conditions of typical soils in irrigated farms of Central Arizona. We tested under static conditions the performance of the sensor on three soils of contrasting texture. Observations were collected as time series data as soil moisture changed from saturation to permanent wilting point. Observations were repeated at the hours of lowest and highest temperatures. In addition, this study included soil penetration resistance and salinity determinations. Preliminary results indicate that soil temperature of the upper layer caused the most dynamic change in the sensor output. The ECa curves of the three soil textures tested had well defined distinctive characteristics. Final multivariate analysis is pending.
Resumo:
Mangoes in the Brazilian semi-arid stands out in the national scenario due to high yields and fruit quality, and also to the possibility of all-year production taking advantage of the climatic conditions as well as management technique (irrigation, pruning and growth regulators application) for plant growth and blossom control. Paclobutrazol soil drench applied is normally used for production management of mangoes. This research deals with the evaluation of the effect of foliar applied growth regulators to mango, cultivar 'Kent', as regard to their efficiency for blossom management, in order to allow off season mango production. Three growth regulators (prohexadione-Ca, trinexapac-ethyl and chlormequat chloride) were foliar applied, at two dosages and compared to paclobutrazol applied as soil-drench. In order to compare the effects of the treatment, data were recorded related to panicle emission (percentage and length), period of time until blossom and production, yield (number and plant weight) and post-harvest quality of the fruit (total soluble solids, titratable acidity, pH, firmness, flesh and skin color and appearance). The results showed that prohexadione-Ca and chlormequat chloride induced a 15-day early harvest, while paclobutrazol, alone or combined with prohexadione-Ca, allow to harvest 25 days in advance, when compared to trinexapac-ethyl and control trees. Growth regulators foliar applied and paclobutrazol applied as soil-drench delayed mangoes fruit ripening in post-harvest.
Resumo:
In the Nilo Coelho irrigation scheme, Brazil, the natural vegetation has been replaced by irrigated agriculture, bringing importance for the quantification of the effects on the energy exchanges between the mixed vegetated surfaces and the lower atmosphere. Landsat satellite images and agro-meteorological stations from 1992 to 2011 were used together, for modelling these exchanges. Surface albedo (α0), NDVI and surface temperature (T0) were the basic remote sensing retrieving parameters necessary to calculate the latent heat flux (λE) and the surface resistance to evapotranspiration (rs) on a large scale. The daily net radiation (Rn) was obtained from α0, air temperature (Ta) and short-wave transmissivity (τsw) throughout the slob equation, allowing the quantification of the daily sensible heat flux (H) by residual in the energy balance equation. With a threshold value for rs, it was possible to separate the energy fluxes from crops and natural vegetation. The averaged fractions of Rn partitioned as H and λE, were in average 39 and 67%, respectively. It was observed an increase of the energy used for the evapotranspiration process inside irrigated areas from 51% in 1992 to 80% in 2011, with the ratio λE/Rn presenting an increase of 3 % per year. The tools and models applied in the current research, can subsidize the monitoring of the coupled climate and land use changes effects in irrigation perimeters, being valuable when aiming the sustainability of the irrigated agriculture in the future, avoiding conflicts among different water users. © 2012 SPIE.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Environmental conditions favor the predominance of dense populations of cyanobacteria in reservoirs in northeastern Brazil. The aim of this study was to understand cyanobacterial population dynamics in the rainy and dry seasons at two depths in the Arcoverde reservoir. Microalgae and cyanobacteria samples were collected during 24 hours with intervals of 4 hours (nycthemeral) at sub-surface and 10 m using a van Dorn bottle and a determined biomass. Physical and chemical variables were obtained and the data were analyzed using the principal component analysis (PCA). No nycthemeral variations in the taxonomic composition or distribution of the populations of cyanobacteria were found between the different times of day in either the rainy or dry season. In both seasons, the greatest biomass of the phytoplankton community was made up of cyanobacteria at two depths and all times of the day. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju was dominant at all times of the day on both the surface and at the bottom. In the rainy season, the differences in cyanobacterial biomass between the surface and bottom were less significant than in the dry season. The differences in cyanobacterial biomass between surface and bottom were less pronounced than those found in the dry season. We concluded that a) physical variables better explain the alterations of species in the phytoplankton community in an environment dominated by cyanobacteria throughout the year; b) seasonal climatic factors associated to periods of stratification and de-stratification are important for alterations in the community and variations in biomass and, c) the turbidity caused by rainfall favored the emergence and establishment of other cyanobacteria, especially Planktothrix agardhii (Gomont) Anagnostidis & Komarek.