945 resultados para Salmonella epidemiology
Resumo:
Epidemiology of symptomatic rotaviruses from Bangalore and Mysore in Southern India was investigated. While serotype G3 predominated throughout the 7-year study period from 1988 to 1994 in Bangalore, serotype G1 was more predominant than serotype G3 in Mysore during 1993 and 1994. Serotype G2 strains were either not detected or infrequently observed in both the cities. However, several strains with subgroup I and lsquoshortrsquo RNA pattern that exhibited high reactivity with typing MAbs specific for serotype 2 as well as other serotypes were detected throughout the period. Among the nonserotypeable strains from both cities, several exhibited dual subgroup (SGI+II) or subgroup I specificity and lsquolongrsquo RNA pattern indicating their probable animal origin. Notably, a gradual, yet highly significant reduction in rotavirus gastroenteritis, from 45.3% in 1988 to 1.8% during 1994, was observed in Bangalore in stark contrast to the consistently high (about 34%) incidence of asymptomatic infections among neonates by I321-like G10P11 type strains during the same period. Moreover, I321-like asymptomatic strains were not detected in children with diarrhea.
Resumo:
Proteolysis is important in bacterial pathogenesis and colonization of animal and plant hosts. In this work I have investigated the functions of the bacterial outer membrane proteases, omptins, of Yersinia pestis and Salmonella enterica. Y. pestis is a zoonotic pathogen that causes plague and has evolved from gastroenteritis-causing Yersinia pseudotuberculosis about 13 000 years ago. S. enterica causes gastroenteritis and typhoid fever in humans. Omptins are transmembrane β-barrels with ten antiparallel β-strands and five surface-exposed loops. The loops are important in substrate recognition, and variation in the loop sequences leads to different substrate selectivities between omptins, which makes omptins an ideal platform to investigate functional adaptation and to alter their polypeptide substrate preferences. The omptins Pla of Y. pestis and PgtE of S. enterica are 75% identical in their amino acid sequences. Pla is a multifunctional protein with proteolytic and non-proteolytic functions, and it increases bacterial penetration and proliferation in the host. Functions of PgtE increase migration of S. enterica in vivo and bacterial survival in mouse macrophages, thus enhancing bacterial spread within the host. Mammalian plasminogen/fibrinolytic system maintains the balance between coagulation and fibrinolysis and participates in several cellular processes, e.g., cell migration and degradation of extracellular matrix proteins. This system consists of activation cascades, which are strictly controlled by several regulators, such as plasminogen activator inhibitor 1 (PAI-1), α2-antiplasmin (α2AP), and thrombin-activatable fibrinolysis inhibitor (TAFI). This work reveals novel interactions of the omptins of Y. pestis and S. enterica with the regulators of the plasminogen/fibrinolytic system: Pla and PgtE inactivate PAI-1 by cleavage at the reactive site peptide bond, and degrade TAFI, preventing its activation to TAFIa. Structure-function relationship studies with Pla showed that threonine 259 of Pla is crucial in plasminogen activation, as it prevents degradation of the plasmin catalytic domain by the omptin and thus maintains plasmin stability. In this work I constructed chimeric proteins between Pla and Epo of Erwinia pyrifoliae that share 78% sequence identity to find out which amino acids and regions in Pla are important for its functions. Epo is neither a plasminogen activator nor an invasin, but it degrades α2AP and PAI-1. Cumulative substitutions towards Pla sequence turned Epo into a Pla-like protein. In addition to threonine 259, loops 3 and 5 are critical in plasminogen activation by Pla. Turning Epo into an invasin required substitution of 31 residues located at the extracellular side of the Epo protein above the lipid bilayer, and also of the β1-strand in the N-terminal transmembrane region of the protein. These studies give an example of how omptins adapt to novel functions that advantage their host bacteria in different ecological niches.
Resumo:
Salmonella enterica serovar Typhimurium is a common cause of gastroenteritis in humans and, occasionally, also causes systemic infection. During systemic infection an important characteristic of Salmonella is its ability to survive and replicate within macrophages. The outer membrane protease PgtE of S. enterica is a member of the omptin family of outer membrane aspartate proteases, which are beta-barrel proteins with five surface-exposed loops. The main goals of this study were to characterize biological substrates and pathogenesis-associated functions of PgtE and to determine the conditions where PgtE is fully active. In this study we found that PgtE requires rough lipopolysaccharide (LPS) to be functional but is sterically inhibited by the long O-antigen side chain in smooth LPS. Salmonella isolates normally are smooth with a long oligosaccharide O-antigen, and PgtE remains functionally cryptic in wild-type Salmonella cultivated in vitro. Interestingly, our results showed that due to increased expression of PgtE and to reduced length of the LPS O-antigen chains, the wild-type Salmonella expresses highly functional PgtE when isolated from mouse macrophage-like J774A.1 cells. Salmonella is thought to be continuously released from macrophages to infect new ones, and our results suggest that PgtE is functional during these transient extracellular growth phases. Six novel host protein substrates were identified for PgtE in this work. PgtE was previously known to activate human plasminogen (Plg) to plasmin, a broad-spectrum serine protease, and in this study PgtE was shown to interfere with the Plg system by inactivating the main inhibitor of plasmin, alpha2-antiplasmin. PgtE also interferes with another important proteolytic system of mammals by activating pro-matrix metalloproteinase-9 to an active gelatinase. PgtE also directly degrades gelatin, a component of extracellular matrices. PgtE also increases bacterial resistance against complement-mediated killing in human serum and enhances survival of Salmonella within murine macrophages as well as in the liver and spleen of intraperitoneally infected mice. Taken together, the results in this study suggest that PgtE is a virulence factor of Salmonella that has adapted to interfere with host proteolytic systems and to modify extracellular matrix; these features likely assist the migration of Salmonella during systemic salmonellosis.
Resumo:
The LysR-type transcriptional regulators (LTTRs) are widely distributed in various genera of prokaryotes LTTRs are DNA binding proteins that can positively or negatively regulate target gene expression and can also repress their own transcription Salmonella enterica comprises a group of Gram-negative bacteria capable of causing clinical syndromes that range from self-limiting diarrhoea to severe fibrinopurulent necrotizing enteritis and life threatening systemic disease. The survival and replication of Salmonella in macrophages and in infected host is brought about by the means of various two component regulatory systems, transporters and other virulence islands In Salmonella genome the existence of 44 LTTRs has been documented These LTTRs regulate bacterial stress response. systemic virulence in mice and also many virulence determinants in vitro. Here we focus on the findings that elucidate the structure and function of the LTTRs in Salmonella and discuss the importance of these LTTRs in making Salmonella a Successful pathogen...
Resumo:
The first part of this work investigates the molecular epidemiology of a human enterovirus (HEV), echovirus 30 (E-30). This project is part of a series of studies performed in our research team analyzing the molecular epidemiology of HEV-B viruses. A total of 129 virus strains had been isolated in different parts of Europe. The sequence analysis was performed in three different genomic regions: 420 nucleotides (nt) in the VP4/VP2 capsid protein coding region, the entire VP1 capsid protein coding gene of 876 nt, and 150 nt in the VP1/2A junction region. The analysis revealed a succession of dominant sublineages within a major genotype. The temporally earlier genotypes had been replaced by a genetically homogenous lineage that has been circulating in Europe since the late 1970s. The same genotype was found by other research groups in North America and Australia. Globally, other cocirculating genetic lineages also exist. The prevalence of a dominant genotype makes E-30 different from other previously studied HEVs, such as polioviruses and coxsackieviruses B4 and B5, for which several coexisting genetic lineages have been reported. The second part of this work deals with molecular epidemiology of human rhinoviruses (HRVs). A total of 61 field isolates were studied in the 420-nt stretch in the capsid coding region of VP4/VP2. The isolates were collected from children under two years of age in Tampere, Finland. Sequences from the clinical isolates clustered in the two previously known phylogenetic clades. Seasonal clustering was found. Also, several distinct serotype-like clusters were found to co-circulate during the same epidemic season. Reappearance of a cluster after disappearing for a season was observed. The molecular epidemiology of the analyzed strains turned out to be complex, and we decided to continue our studies of HRV. Only five previously published complete genome sequences of HRV prototype strains were available for analysis. Therefore, all designated HRV prototype strains (n=102) were sequenced in the VP4/VP2 region, and the possibility of genetic typing of HRV was evaluated. Seventy-six of the 102 prototype strains clustered in HRV genetic group A (HRV-A) and 25 in group B (HRV-B). Serotype 87 clustered separately from other HRVs with HEV species D. The field strains of HRV represented as many as 19 different genotypes, as judged with an approximate demarcation of a 20% nt difference in the VP4/VP2 region. The interserotypic differences of HRV were generally similar to those reported between different HEV serotypes (i.e. about 20%), but smaller differences, less than 10%, were also observed. Because some HRV serotypes are genetically so closely related, we suggest that the genetic typing be performed using the criterion "the closest prototype strain". This study is the first systematic genetic characterization of all known HRV prototype strains, providing a further taxonomic proposal for classification of HRV. We proposed to divide the genus Human rhinoviruses into HRV-A and HRV-B. The final part of the work comprises a phylogenetic analysis of a subset (48) of HRV prototype strains and field isolates (12) in the nonstructural part of the genome coding for the RNA-dependent RNA polymerase (3D). The proposed division of the HRV strains in the species HRV-A and HRV-B was also supported by 3D region. HRV-B clustered closer to HEV species B, C, and also to polioviruses than to HRV-A. Intraspecies variation within both HRV-A and HRV-B was greater in the 3D coding region than in the VP4/VP2 coding region, in contrast to HEV. Moreover, the diversity of HRV in 3D exceeded that of HEV. One group of HRV-A, designated HRV-A', formed a separate cluster outside other HRV-A in the 3D region. It formed a cluster also in the capsid region, but located within HRV-A. This may reflect a different evolutionary history of distinct genomic regions among HRV-A. Furthermore, the tree topology within HRV-A in the 3D region differed from that in the VP4/VP2, suggesting possible recombination events in the evolution of the strains. No conflicting phylogenies were observed in any of the 12 field isolates. Possible recombination was further studied using the Similarity and Bootscanning analyses of the complete genome sequences of HRV available in public databases. Evidence for recombination among HRV-A was found, as HRV2 and HRV39 showed higher similarity in the nonstructural part of the genome. Whether HRV2 and HRV39 strains - and perhaps also some other HRV-A strains not yet completely sequenced - are recombinants remains to be determined.
Resumo:
Salmonella has evolved several strategies to counteract intracellular microbicidal agents like reactive oxygen and nitrogen species. However, it is not yet clear how Salmonella escapes lysosomal degradation. Some studies have demonstrated that Salmonella can inhibit phagolysosomal fusion, whereas other reports have shown that the Salmonella-containing vacuole (SCV) fuses/interacts with lysosomes. Here, we have addressed this issue from a different perspective by investigating if the infected host cell has a sufficient quantity of lysosomes to target Salmonella. Our results suggest that SCVs divide along with Salmonella, resulting in a single bacterium per SCV. As a consequence, the SCV load per cell increases with the division of Salmonella inside the host cell. This demands more investment from the host cell to counteract Salmonella. Interestingly, we observed that Salmonella infection decreases the number of acidic lysosomes inside the host cell both in vitro and in vivo. These events potentially result in a condition in which an infected cell is left with insufficient acidic lysosomes to target the increasing number of SCVs, which favors the survival and proliferation of Salmonella inside the host cell.
Resumo:
The genus Salmonella includes many pathogens of great medical and veterinary importance. Bacteria belonging to this genus are very closely related to those belonging to the genus Escherichia. lacZYA operon and lacI are present in Escherichia coli, but not in Salmonella enterica. It has been proposed that Salmonella has lost lacZYA operon and lacI during evolution. In this study, we have investigated the physiological and evolutionary significance of the absence of lacI in Salmonella enterica. Using murine model of typhoid fever, we show that the expression of Lacl causes a remarkable reduction in the virulence of Salmonella enterica. Lacl also suppresses the ability of Salmonella enterica to proliferate inside murine macrophages. Microarray analysis revealed that Lacl interferes with the expression of virulence genes of Salmonella pathogenicity island 2. This effect was confirmed by RT-PCR and Western blot analysis. Interestingly, we found that SBG0326 of Salmonella bongori is homologous to lacI of Escherichia coli. Salmonella bongori is the only other species of the genus Salmonella and it lacks the virulence genes of Salmonella pathogenicity island 2. Overall, our results demonstrate that Lacl is an antivirulence factor of Salmonella enterica and suggest that absence of lacI has facilitated the acquisition of virulence genes of Salmonella pathogenicity island 2 in Salmonella enterica making it a successful systemic pathogen.
Resumo:
Primary biliary cirrhosis (PBC) is caused by an autoimmune inflammation of the small bile ducts. It results to destruction of bile ducts, accumulation of the bile in the liver, and cirrhosis. The prevalence and incidence of PBC is increasing in the Western world. The prevalence is highest in the USA (402 per million) and incidence in Scotland (49/million/year). Our aim was to assess the epidemiology of PBC in Finland. Patients for the epidemiological study were searched from the hospital discharge records from year 1988 to 1999.The prevalence rose from 103 to 180/million from 1988 to 1999, an annual increase of 5.1%. The incidence rose from 12 to 17 /million/year, an annual increase of 3.5%. The age at death increased markedly from 65 to 76 years. The risk of liver related deaths diminished over time. The treatment of PBC is based on Ursodeoxycholic acid (UDCA). During 20 years 50% of patients end up with cirrhosis. Our treatment option was to combine budesonide, a potent corticosteroid with a high first pass metabolism in the liver, to UDCA and evaluate the liver effects and systemic effects such as bone mass density (BMD) changes. Our aim was to find out if combination of laboratory tests would serve as a surrogate marker for PBC and help reducing the need for liver biopsy. Non-cirrhotic PBC patients were randomized to receive budesonide 6 mg/day combined to UDCA 15 mg /kg/day or UDCA alone for three years. The combination therapy with UDCA and budesonide was effective: stage improved 22%, fibrosis 25%, and inflammation 32%. In the UDCA group the changes were: 20% deterioriation in stage and 70% in fibrosis, but a 10% improvement in inflammation. BMD in femoral neck decreased by 3.6% in the combination group and by 1.9% in the UDCA group. The reductions in lumbar spine were 2.8% and 0.7%. Pharmacokinetics did not differ between the stages of PBC. HA, PIIINP, bile acids, and AST were significantly different within stages I-III and could differentiate the mild fibrosis (F0F1) from the moderate (F2F3). The combination of these individual markers (PBC-score) further improved the accuracy. The area under the ROC of the PBC score, using a cut of value 66, had a sensitivity of 81.4% and a specificity of 65.2% to classify the stage of PBC. The prevalence of PBC in Finland increases, which results from increasing incidence and improved survival. The combination of budesonide and UDCA improves liver histology compared to UDCA alone in non-cirrhotic stages of PBC. The treatment may reduce BMD. Hyaluronic acid, PIIINP, AST, and bile acids may serve as tools to monitor the treatment response in the early stages of PBC. The budesonide and UDCA combination therapy is an option for those patients who do not receive full response from UDCA and are still at the non-cirrhotic stage of PBC.