903 resultados para Safe Harbor
Resumo:
Bentonite clay is identified as potential buffer in deep geological repositories (DGR) that store high level radioactive wastes (HLW) as the expansive clay satisfies the expected mechanical and physicochemical functions of the buffer material. In the deep geological disposal of HLW, iodine-129 is one of the significant nuclides, attributable to its long half-life (half life 1⁄4 1:7 × 107 years). However, the negative charge on the basal surface of bentonite particles precludes retention of iodide anions. To render the bentonite effective in retaining hazardous iodide species in DGR, improvement of the anion retention capacity of bentonite becomes imperative. The iodide retention capac-ity of bentonite is improved by admixing 10 and 20% Ag-kaolinite (Ag-K) with bentonite (B) on a dry mass basis. The present study produced Ag-kaolinite by heating silver nitrate-kaolinite mixes at 400°C. Marginal release of iodide retained by Ag-kaolinite occurred under extreme acidic (pH 1⁄4 2:5) and alkaline (pH 1⁄4 12:5) conditions. The swell pressure and iodide etention results of the B-Ag-K specimens bring out that mixing Ag-K with bentonite does not chemically modify the expansive clay; the mixing is physical in nature and Ag-K presence only contributes to iodide retention of the admixture. DOI: 10.1061/(ASCE)HZ.2153-5515.0000121. © 2012 American Society of Civil Engineers.
Resumo:
In October 1970, Moss Landing Marine Laboratories began an observational program to determine/the seasonal changes in the water chemistry of Elkhorn Slough and Moss Landing Harbor. This data report contains the first year of data (October 1970 - November 1971). These data are of immediate interest in determining the flushing and mixing mechanisms of the slough and in establishing the effect that local domestic and industrial effluents have on the distribution of these chemical parameters. (Document contains 78 Pages)
Resumo:
(PDF contains 76 pages)
Resumo:
(PDF contains 300 pages)
Resumo:
This study has investigated the medium to long term costs to Higher Education Institutions (HEIs) of the preservation of research data and developed guidance to HEFCE and institutions on these issues. It has provided an essential methodological foundation on research data costs for the forthcoming HEFCE-sponsored feasibility study for a UK Research Data Service.It will also assist HEIs and funding bodies wishing to establish strategies and TRAC costings for long-term data management and archiving. The rising tide of digital research data raises issues relating to access, curation and preservation for HEIs and within the UK a growing number of research funders are now implementing policies requiring researchers to submit data management, preservation or data sharing plans with their funding applications.
Resumo:
Data has always been fundamental to many areas of research but in recent years it has become central to more disciplines and inter-disciplinary projects and grown substantially in scale and complexity. There is increasing awareness of its strategic importance as a resource in addressing modern global challenges and the possibilities being unlocked by rapid technological advances and their application in research (NAS2009). The first Keeping Research Data Safe study funded by JISC made a major contribution to understanding of long-term preservation costs for research data by developing a cost model and identifying cost variables for preserving research data in UK universities (Beagrie et al, 2008). The Keeping Research Data Safe 2 (KRDS2) project has built on this work.
Resumo:
In July 1974, we began a two-year baseline study of the Moss Landing Elkhorn Slough marine environment for Pacific Gas and Electric Company as mandated by the Coastal Commission. The original proposal included strong recommendations for more complete oceanographic studies and a third year of data collection. These further studies were not funded. This report is divided into three sections: oceanography, benthic invertebrate ecology and fish and zooplankton ecology. (PDF contains 480 pages)
Spatial mapping of sedimentary contaminants in the Baltimore Harbor/Patapsco river/Back river system
Resumo:
Primary objective was to map concentrations of target contaminants in the surfacial sediments. Secondary objectives included: characterization of potential sites for sediment capping demonstration projects, further characterization of sediment depositional and accumulation patterns, and estimation of historical contaminant inventories through sediment geochronology. (PDF contains 112 pages)
Resumo:
The Los Angeles Harbor at San Pedro with its natural advantages, and the big development of these now underway, will very soon be the key to the traffic routes of Southern California. The Atchison, Topeka, and Santa Fe railway company realizing this and, not wishing to be caught asleep, has planned to build a line from El Segundo to the harbor. The developments of the harbor are not the only developments taking place in these localities and the proposed new line is intended to include these also.
Resumo:
To understand harbor seal social and mating strategies, I examined site fidelity, seasonal abundance and distribution, herd integrity, and underwater behavior of individual harbor seals in southern Monterey Bay. Individual harbor seals (n = 444) were identified by natural markings and represented greater than 80% of an estimated 520 seals within this community. Year to year fidelity of individual harbor seals to southern Monterey Bay coastline was 84% (n = 388), and long-term associations (>2 yrs) among individuals were common (>40%). Consistent with these long-term associations, harbor seals were highly social underwater throughout the year. Underwater social behavior included three primary types: (1) visual and acoustic displays, such as vocalizing, surface splashing, and bubble-blowing; (2) playful or agonistic social behavior such as rolling, mounting, attending, and biting; and (3) signal gestures such as head-thrusting, fore-flipper scratch~ng, and growling. Frequency of these types of behavior was related to seal age, gender, season, and resource availability. Underwater behavior had a variety of functions, including promotion of learning and social development, reduction of aggression and preservation of social bonds by maintaining social hierarchy, and facilitation of mate selection during breeding season. Social behavior among adult males was significantly correlated with vocalization characteristics (r = 0.99, X2 = 37.7, p = 0.00087), indicating that seals may assess their competition based on underwater vocalization displays and adopt individual strategies for attracting females during breeding season based on social status. Individual mating strategies may include defending underwater territories, using scramble tactics, and developing social alliances. (PDF contains 105 pages)