119 resultados para Sadat, Anwar
Resumo:
Mode of access: Internet.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
We present the clinical and ophthalmological findings in two infants with neonatal Marfan syndrome (nMFS) and primary trabeculodysgenesis (PT). Fibrillin 1 (FBN1) mutations were confirmed in both cases. Numerous eye anomalies have been recognized in infants with nMFS, but PT has not been reported previously. Our report expands the phenotype of nMFS, and highlights the importance of early and careful ophthalmological assessment of these infants. (C) 2004 Wiley-Liss, Inc.
Resumo:
Correspondence between the T-cell epitope responses of vaccine immunogens and those of pathogen antigens is critical to vaccine efficacy. In the present study, we analyzed the spectrum of immune responses of mice to three different forms of the SARS coronavirus nucleocapsid (N): (1) exogenous recombinant protein (N-GST) with Freund's adjuvant; (2) DNA encoding unmodified N as an endogenous cytoplasmic protein (pN); and (3) DNA encoding N as a LAMP-I chimera targeted to the lysosomal MHC II compartment (p-LAMP-N). Lysosomal trafficking of the LAMP/N chimera in transfected cells was documented by both confocal and immunoelectron microscopy. The responses of the immunized mice differed markedly. The strongest T-cell IFN-gamma and CTL responses were to the LAMP-N chimera followed by the pN immunogen. In contrast, N-GST elicited strong T cell IL-4 but minimal IFN-gamma responses and a much greater antibody response. Despite these differences, however, the immunodominant T-cell ELISpot responses to each of the three immunogens were elicited by the same N peptides, with the greatest responses being generated by a cluster of five overlapping peptides, N76-114, each of which contained nonameric H2(d) binding domains with high binding scores for both class I and, except for N76-93, class II alleles. These results demonstrate that processing and presentation of N, whether exogenously or endogenously derived, resulted in common immunodominant epitopes, supporting the usefulness of modified antigen delivery and trafficking forms and, in particular, LAMP chimeras as vaccine candidates. Nevertheless, the profiles of T-cell responses were distinctly different. The pronounced Th-2 and humoral response to N protein plus adjuvant are in contrast to the balanced IFN-gamma and IL-4 responses and strong memory CTL responses to the LAMP-N chimera. (C) 2005 Elsevier Inc. All rights reserved.
Resumo:
Objectives: The aim of this study was to assess the consistency and performance of radiologists interpreting breast magnetic resonance imaging (MRI) examinations. Materials and Methods: Two test sets of eight cases comprising cancers, benign disease, technical problems and parenchymal enhancement were prepared from two manufacturers' equipment (X and Y) and reported by 15 radiologists using the recording form and scoring system of the UK MRI breast screening study [(MAgnetic Resonance Imaging in Breast Screening (MARIBS)]. Variations in assessments of morphology, kinetic scores and diagnosis were measured by assessing intraobserver and interobserver variability and agreement. The sensitivity and specificity of reporting performances was determined using receiver operating characteristic (ROC) curve analysis. Results: Intraobserver variation was seen in 13 (27.7%) of 47 of the radiologists' conclusions (four technical and seven pathological differences). Substantial interobserver variation was observed in the scores recorded for morphology, pattern of enhancement, quantification of enhancement and washout pattern. The overall sensitivity of breast MRI was high [88.6%, 95% confidence interval (CI) 77.4-94.7%], combined with a specificity of 69.2% (95% CI 60.5-76.7%). The sensitivities were similar for the two test sets (P=.3), but the specificity was significantly higher for the Manufacturer X dataset (P
Resumo:
With the increasing use of digital computers for data acquisition and digital process control, frequency domain transducers have become very attractive due to their virtual digital output. Essentially they are electrically maintained oscillators where the sensor is the controlling resonator.They are designed to make the frequency a function of the physical parameter being measured. Because of their high quality factor, mechanical resonators give very good frequency stability and are widely used as sensors. For this work symmetrical mechanical resonators such as the tuning fork were considered, to be the most promising. These are dynamically clamped and can be designed to have extensive regions where no vibrations occur.This enables the resonators to be robustly mounted in a way convenient for various applications. Designs for the measurement of fluid density and tension have been produced. The principle of the design of the resonator for fluid density measurement is a thin gap (trapping a lamina of fluid) between its two members which vibrate in antiphase.An analysis of the inter action between this resonator and the fluid lamina has carried out.In gases narrow gaps are needed for a good sensitivity and the use of the material fused quartz, because of its low density and very low temperature coefficient, is ideally suitable. In liquids an adequate sensitivity is achieved even with a wide lamina gap. Practical designs of such transducers have been evolved. The accuracy for liquid measurements is better than 1%. For gases it was found that, in air, a change of atmospheric pressure of 0.3% could be detected. In constructing a tension transducer using such a mechanical sensor as a wire or a beam, major difficulties are encountered in making an efficient clamping arrangement for the sensor. The use of dynamically clamped beams has been found to overcome the problem and this is the basis of the transducer investigated.
Resumo:
The replacement of diesel fuel by ultra-carbofluids was perceived to offer the potential to decrease the emissions of environmental pollutants such as carbon dioxide, carbon monoxide, hydrocarbons (HC's) and smoke. Such ultracarbofluids consist of a suspension of coal in fuel oil and water generally in the ratio of 5: 3: 2 plus a small amount of stabilising additive. The literature relating to the economies of coal and fuel oil production, and the production and properties of charcoal and vegetable oils has been critically reviewed. The potential use of charcoal and vegetable oils as replacements for coal and fuel oil are discussed. An experimental investigation was undertaken using novel bio-ultracarbofluid formulations. These differed from an ultracarbofluid by having bio-renewable charcoal and vegetable oil in place of coal and fuel oil. Tests were made with a Lister-Petter 600cc 2-cylinder, 4-stroke diesel engine fitted with a Heenan-Froude DPX 1 water brake dynamometer to measure brake power output, and Mexa-321E and Mexa-211E analysers to measure exhaust pollutants. Measurements were made of engine brake power output, carbon dioxide, carbon monoxide, hydrocarbons and smoke emissions over the speed range 1000 to 3000 rpm at 200 rpm intervals. The results were compared with those obtained with a standard diesel reference fuel. All the bio-ultracarbofluid formulations produced lower brake power outputs (i.e. 5.6% to 20.7% less brake power) but substantially improved exhaust emissions of CO2, CO, HC's and smoke. The major factor in the formulation was found to be the type and amount of charcoal; charcoal with a high volatile content (27.2%) and present at 30% by mass yielded the best results, i.e. only slightly lower brake power output and significantly lower exhaust pollutants.
Resumo:
Changes in the concentration of some constituents in women's saliva during the menstrual cycle were studied. Saliva was used because it is easier to collect than other body fluids and is continuously available for analysis. Glucose, the enzyme 17-Acetyl-D-glucosaminidase (NAG) and Calcium which are saliva constituents and belong to three different chemical groups were selected for the study. Several analytical techniques were investigated. The fluorometric assay procedure was found to be the best because of its specificity and sensitivity for the estimation of these constituents. resides the fluorametric method a spectrophotometric method was used in the NAG determination and an atomic absorption method in the calcium estimation. Glucose was estimated by an enzymatic method. This is based on the reaction of glucose with the enzymes glucose oxidase and peroxidase to yield hydrogen peroxide, which in turn oxidises a non-fluorescent substrate, p-hydroxyphenylacetic acid, to a highly fluorescent product. The saliva samples in this determination had to be centrifuged at high speed, heated in a boiling water bath, centrifuged again and then treated with a mixture of cation and anion resins to remove the substances that inhibited the enzyme system. In the determination of the NAG activity the saliva samples were diluted with citric acid/phosphate buffer, and then centrifuged at high speed. The assay was based on the enzymic hydrolysis of the non-fluorescent substrate 4-Methyl-umbelli1eryl-p-D-glucosaminide to the highly fluorescent 4-Methyl-umbelliferone• Calcium was estimated by a fluorometric procedure based upon the measurement of the fluorescence produced by the complex formed between calcein blue and calcium, at pH 9 - 13. From the results obtained from the analysis of saliva samples of several women it was found that glucose showed a significant increase in its level around the expected time of ovulation. This was found in seven cycles out of ten. Similar results were found with the enzyme NAG. No significant change in the calcium levels was observe& at any particular time of the cycle. The levels of the glucose, the activity of the enzyme NAG and the concentration of the calcium were found to change daily, and to differ from one subject to another and in the same subject from cycle to cycle. The increase observed it salivary glucose levels and the enzyme NAG activity could be monitored to predict the time of ovulation.
The compressive creep and load relaxation properties of a series of high aluminium zinc-based alloys
Resumo:
A new family of commercial zinc alloys designated as ZA8, ZA12, and ZA27 and high damping capacity alloys including Cosmal and Supercosmal and aluminium alloy LM25 were investigated for compressive creep and load relaxation behaviour under a series of temperatures and stresses. A compressive creep machine was designed to test the sand cast hollow cylindrical test specimens of these alloys. For each compressive creep experiment the variation of creep strain was presented in the form of graphs plotted as percentage of creep strain () versus time in seconds (s). In all cases, the curves showed the same general form of the creep curve, i.e. a primary creep stage, followed by a linear steady-state region (secondary creep). In general, it was observed that alloy ZA8 had the least primary creep among the commercial zinc-based alloys and ZA27 the greatest. The extent of primary creep increased with aluminium content to that of ZA27 then declined to Supercosmal. The overall creep strength of ZA27 was generally less than ZA8 and ZA12 but it showed better creep strength than ZA8 and ZA12 at high temperature and high stress. In high damping capacity alloys, Supercosmal had less primary creep and longer secondary creep regions and also had the lowest minimum creep rate among all the tested alloys. LM25 exhibited almost no creep at maximum temperature and stress used in this research work. Total creep elongation was shown to be well correlated using an empirical equation. Stress exponent and activation energies were calculated and found to be consistent with the creep mechanism of dislocation climb. The primary α and β phases in the as-cast structures decomposed to lamellar phases on cooling, with some particulates at dendrite edges and grain boundaries. Further breakdown into particulate bodies occurred during creep testing, and zinc bands developed at the highest test temperature of 160°C. The results of load relaxation testing showed that initially load loss proceeded rapidly and then deminished gradually with time. Load loss increased with temperature and almost all the curves approximated to a logarithmic decay of preload with time. ZA alloys exhibited almost the same load loss at lower temperature, but at 120°C ZA27 improved its relative performance with the passage of time. High damping capacity alloys and LM25 had much better resistance to load loss than ZA alloys and LM25 was found to be the best against load loss among these alloys. A preliminary equation was derived to correlate the retained load with time and temperature.
Resumo:
A novel modeling approach is applied to karst hydrology. Long-standing problems in karst hydrology and solute transport are addressed using Lattice Boltzmann methods (LBMs). These methods contrast with other modeling approaches that have been applied to karst hydrology. The motivation of this dissertation is to develop new computational models for solving ground water hydraulics and transport problems in karst aquifers, which are widespread around the globe. This research tests the viability of the LBM as a robust alternative numerical technique for solving large-scale hydrological problems. The LB models applied in this research are briefly reviewed and there is a discussion of implementation issues. The dissertation focuses on testing the LB models. The LBM is tested for two different types of inlet boundary conditions for solute transport in finite and effectively semi-infinite domains. The LBM solutions are verified against analytical solutions. Zero-diffusion transport and Taylor dispersion in slits are also simulated and compared against analytical solutions. These results demonstrate the LBM’s flexibility as a solute transport solver. The LBM is applied to simulate solute transport and fluid flow in porous media traversed by larger conduits. A LBM-based macroscopic flow solver (Darcy’s law-based) is linked with an anisotropic dispersion solver. Spatial breakthrough curves in one and two dimensions are fitted against the available analytical solutions. This provides a steady flow model with capabilities routinely found in ground water flow and transport models (e.g., the combination of MODFLOW and MT3D). However the new LBM-based model retains the ability to solve inertial flows that are characteristic of karst aquifer conduits. Transient flows in a confined aquifer are solved using two different LBM approaches. The analogy between Fick’s second law (diffusion equation) and the transient ground water flow equation is used to solve the transient head distribution. An altered-velocity flow solver with source/sink term is applied to simulate a drawdown curve. Hydraulic parameters like transmissivity and storage coefficient are linked with LB parameters. These capabilities complete the LBM’s effective treatment of the types of processes that are simulated by standard ground water models. The LB model is verified against field data for drawdown in a confined aquifer.
Resumo:
A novel modeling approach is applied to karst hydrology. Long-standing problems in karst hydrology and solute transport are addressed using Lattice Boltzmann methods (LBMs). These methods contrast with other modeling approaches that have been applied to karst hydrology. The motivation of this dissertation is to develop new computational models for solving ground water hydraulics and transport problems in karst aquifers, which are widespread around the globe. This research tests the viability of the LBM as a robust alternative numerical technique for solving large-scale hydrological problems. The LB models applied in this research are briefly reviewed and there is a discussion of implementation issues. The dissertation focuses on testing the LB models. The LBM is tested for two different types of inlet boundary conditions for solute transport in finite and effectively semi-infinite domains. The LBM solutions are verified against analytical solutions. Zero-diffusion transport and Taylor dispersion in slits are also simulated and compared against analytical solutions. These results demonstrate the LBM’s flexibility as a solute transport solver. The LBM is applied to simulate solute transport and fluid flow in porous media traversed by larger conduits. A LBM-based macroscopic flow solver (Darcy’s law-based) is linked with an anisotropic dispersion solver. Spatial breakthrough curves in one and two dimensions are fitted against the available analytical solutions. This provides a steady flow model with capabilities routinely found in ground water flow and transport models (e.g., the combination of MODFLOW and MT3D). However the new LBM-based model retains the ability to solve inertial flows that are characteristic of karst aquifer conduits. Transient flows in a confined aquifer are solved using two different LBM approaches. The analogy between Fick’s second law (diffusion equation) and the transient ground water flow equation is used to solve the transient head distribution. An altered-velocity flow solver with source/sink term is applied to simulate a drawdown curve. Hydraulic parameters like transmissivity and storage coefficient are linked with LB parameters. These capabilities complete the LBM’s effective treatment of the types of processes that are simulated by standard ground water models. The LB model is verified against field data for drawdown in a confined aquifer.
Resumo:
Peer reviewed
Resumo:
The Chinese Loess Plateau red clay sequences display a continuous alternation of sedimentary cycles that represent recurrent climatic fluctuations from 2.58 Ma to the Miocene. Deciphering such a record can provide us with vital information on global and Asian climatic variations. Lack of fossils and failure of absolute dating methods made magnetostratigraphy a leading method to build age models for the red clay sequences. Here we test the magnetostratigraphic age model against cyclostratigraphy. For this purpose we investigate the climate cyclicity recorded in magnetic susceptibility and sedimentary grain size in a red clay section previously dated 11Myr old with magnetostratigraphy alone. Magnetostratigraphy dating based on only visual correlation could potentially lead to erroneous age model. In this study the correlation is executed through the iteration procedure until it is supported by cyclostratigraphy; i.e., Milankovitch cycles are resolved in the best possible manner. Our new age model provides an age of 5.2Ma for the Shilou profile. Based on the new age model, wavelet analysis reveals the well-preserved 400 kyr and possible 100 kyr eccentricity cycles on the eastern Chinese Loess Plateau. Further, paleomonsoon evolution during 2.58-5.2Ma is reconstructed and divided into three intervals (2.58-3.6Ma, 3.6-4.5Ma, and 4.5-5.2Ma). The upper part, the youngest stage, is characterized by a relatively intensified summer monsoon, the middle stage reflects an intensification of the winter monsoon and aridification in Asia, and the earliest stage indicates that summer and winter monsoon cycles may have rapidly altered. The use of cyclostratigraphy along withmagnetostratigraphy gives us an effectivemethod of dating red clay sequences, and our results imply that many presently published age models for the red clay deposits should be perhaps re-evaluated.