916 resultados para SUPERGENE GOLD


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the interactions of small molecules with gold nanoparticles is important for controlling their surface chemistry and, hence, how they can be used in specific applications. The interaction of iodoperfluorobenzene compounds with gold nanoparticles was investigated by UV-Vis difference spectroscopy, surface enhanced Raman spectroscopy (SERS) and Synchrotron X-ray photoelectron spectroscopy (XPS). Results from UV-Vis difference spectroscopy demonstrated that iodoperfluorobenzene compounds undergo charge transfer complexation with gold nanoparticles. SERS of the small molecule–gold nanoparticle adducts provided further evidence for formation of charge transfer complexes, while Synchrotron X-ray photoelectron spectroscopy provided evidence of the binding mechanism. Demonstration of interactions of iodoperfluorobenzene compounds with gold nanoparticles further expands the molecular toolbox that is available for functionalising gold nanoparticles and has significant potential for expanding the scope for generation of hybrid halogen bonded materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forty-six archaeological specimens were treated by fire-assay and subsequently analysed by ICP-MS for selected precious metals: Ph, Pt and Au. The investigation was prompted by the possibility that archaeological samples could serve as "indicators" of the precious metal composition of the clays from the excavated sites. Therefore, the experimentally obtained concentrations were carefully studied to determine if there were anomalous levels of these precious metals in the deposits from which the specimens originated. Furthermore, the analytical data were used to establish if it was feasible to distinguish ancient potsherds based on precious metal concentrations, for employment as a basis in provenance studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface-enhanced Raman spectroscopy (SERS) is a potentially important tool in the rapid and accurate detection of pathogenic bacteria in biological fluids. However, for diagnostic application of this technique, it is necessary to develop a highly sensitive, stable, biocompatible and reproducible SERS-active substrate. In this work, we have developed a silver–gold bimetallic SERS surface by a simple potentiostatic electrodeposition of a thin gold layer on an electrochemically roughened nanoscopic silver substrate. The resultant substrate was very stable under atmospheric conditions and exhibited the strong Raman enhancement with the high reproducibility of the recorded SERS spectra of bacteria (E. coli, S. enterica, S. epidermidis, and B. megaterium). The coating of the antibiotic over the SERS substrate selectively captured bacteria from blood samples and also increased the Raman signal in contrast to the bare surface. Finally, we have utilized the antibiotic-coated hybrid surface to selectively identify different pathogenic bacteria, namely E. coli, S. enterica and S. epidermidis from blood samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomolecules are chemical compounds found in living organisms which are the building blocks of life and perform important functions. Fluctuation from the normal concentration of these biomolecules in living system leads to several disorders. Thus the exact determination of them in human fluids is essential in the clinical point of view. High performance liquid chromatography, flow injection analysis, capillary electrophoresis, fluorimetry, spectrophotometry, electrochemical and chemiluminescence techniques were usually used for the determination of biologically important molecules. Among these techniques, electrochemical determination of biomolecules has several advantages over other methods viz., simplicity, selectivity and sensitivity. In the past two decades, electrodes modified with polymer films, self-assembled monolayers containing different functional groups and carbon paste have been used as electrochemical sensors. But in recent years, nanomaterials based electrochemical sensors play an important role in the improvement of public health because of its rapid detection, high sensitivity and specificity in clinical diagnostics. To date gold nanoparticles (AuNPs) have received arousing attention mainly due to their fascinating electronic and optical properties as a consequence of their reduced dimensions. These unique properties of AuNPs make them as an ideal candidate for the immobilization of enzymes for biosensing. Further, the electrochemical properties of AuNPs reveal that they exhibit interesting properties by enhancing the electrode conductivity, facilitating electron transfer and improving the detection limit of biomolecules. In this chapter, we summarized the different strategies used for the attachment of AuNPs on electrode surfaces and highlighted the electrochemical determination of glucose, ascorbic acid (AA), uric acid (UA) and dopamine derivatives using the AuNPs modified electrodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes the highly sensitive and selective determination of epinephrine (EP) using self-assembled monomolecular film (SAMF) of 1,8,15,22-tetraamino-phthalocyanatonickel(II) (4α-NiIITAPc) on Au electrode. The 4α-NiIITAPc SAMF modified electrode was prepared by spontaneous adsorption of 4α-NiIITAPc from dimethylformamide solution. The modified electrode oxidizes EP at less over potential with enhanced current response in contrast to the bare Au electrode. The standard heterogeneous rate constant (k°) for the oxidation of EP at 4α-NiIITAPc SAMF modified electrode was found to be 1.94×10−2 cm s−1 which was much higher than that at the bare Au electrode. Further, it was found that 4α-NiIITAPc SAMF modified electrode separates the voltammetric signals of ascorbic acid (AA) and EP with a peak separation of 250 mV. Using amperometric method the lowest detection limit of 50 nM of EP was achieved at SAMF modified electrode. Simultaneous amperometric determination of AA and EP was also achieved at the SAMF modified electrode. Common physiological interferents such as uric acid, glucose, urea and NaCl do not interfere within the potential window of EP oxidation. The present 4α-NiIITAPc SAMF modified electrode was also successfully applied to determine the concentration of EP in commercially available injection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the electrocatalytic oxidation of ascorbic acid (AA) in phosphate buffer solution by the immobilized citrate capped gold nanoparticles (AuNPs) on 1,6-hexanedithiol (HDT) modified Au electrode. X-ray photoelectron spectrum (XPS) of HDT suggests that it forms a monolayer on Au surface through one of the two single bondSH groups and the other single bondSH group is pointing away from the electrode surface. The free single bondSH groups of HDT were used to covalently attach colloidal AuNPs. The covalent attachment of AuNPs on HDT monolayer was confirmed from the observed characteristic carboxylate ion stretching modes of citrate attached with AuNPs in the infra-red reflection absorption spectrum (IRRAS) in addition to a higher reductive desorption charges obtained for AuNPs immobilized on HDT modified Au (Au/HDT/AuNPs) electrode in 0.1 M KOH when compared to HDT modified Au (Au/HDT) electrode. The electron transfer reaction of [Fe(CN)6]4−/3− was markedly hindered at the HDT modified Au (Au/HDT) electrode while it was restored with a peak separation of 74 mV after the immobilization of AuNPs on Au/HDT (Au/HDT/AuNPs) electrode indicating a good electronic communication between the immobilized AuNPs and the underlying bulk Au electrode through a HDT monolayer. The Cottrell slope obtained from the potential-step chronoamperometric measurements for the reduction of ferricyanide at Au/HDT/AuNPs was higher than that of bare Au electrode indicating the increased effective surface area of AuNPs modified electrode. The Au/HDT/AuNPs electrode exhibits excellent electrocatalytic activity towards the oxidation of ascorbic acid (AA) by enhancing the oxidation peak current to more than two times with a 210 mV negative shift in the oxidation potential when compared to a bare Au electrode. The standard heterogeneous electron transfer rate constant (ks) calculated for AA oxidation at Au/HDT/AuNPs electrode was 5.4 × 10−3 cm s−1. The oxidation peak of AA at Au/HDT/AuNPs electrode was highly stable upon repeated potential cycling. Linear calibration plot was obtained for AA over the concentration range of 1–110 μM with a correlation coefficient of 0.9950. The detection limit of AA was found to be 1 μM. The common physiological interferents such as glucose, oxalate ions and urea do not show any interference within the detection limit of AA. The selectivity of the AuNPs modified electrode was illustrated by the determination of AA in the presence of uric acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anthropogenic elemental mercury (Hg0) emission is a serious worldwide environmental problem due to the extreme toxicity of the heavy metal to humans, plants and wildlife. Development of an accurate and cheap microsensor based online monitoring system which can be integrated as part of Hg0 removal and control processes in industry is still a major challenge. Here, we demonstrate that forming Au nanospike structures directly onto the electrodes of a quartz crystal microbalance (QCM) using a novel electrochemical route results in a self-regenerating, highly robust, stable, sensitive and selective Hg0 vapor sensor. The data from a 127 day continuous test performed in the presence of volatile organic compounds and high humidity levels, showed that the sensor with an electrodeposted sensitive layer had 260% higher response magnitude, 3.4 times lower detection limit (,22 mg/m3 or ,2.46 ppbv) and higher accuracy (98% Vs 35%) over a Au control based QCM (unmodified) when exposed to a Hg0 vapor concentration of 10.55 mg/m3 at 1016C. Statistical analysis of the long term data showed that the nano-engineered Hg0 sorption sites on the developed Au nanospikes sensitive layer play a critical role in the enhanced sensitivity and selectivity of the developed sensor towards Hg0 vapor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of the membrane active peptides, Tat44–57 (activator in HIV-1) and melittin (active content of bee venom), on self-assembled monolayers of 6-mercaptohexanoic acid (MHA) on gold electrodes has been studied with scanning electrochemical microscopy (SECM). It was found that MHA, when deprotonated at physiological pH, significantly affected the relative rates of electron transfer between the [Fe(CN)6]4− solution based mediator and the underlying gold electrode, predominantly by the electrostatic interaction between the mediator and MHA. Upon the introduction of Tat44–57 ormelittin to the electrolyte, the relative rate of electron transfer through the MHA layer could be increased or decreased depending on the mediator used. However, in all cases it was found that these peptides have the ability to be incorporated into synthetic SAMs, which has implications for future electrochemical studies carried out using cell mimicking membranes immobilised on such layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigated the interaction between light and gold nanoparticles, for gold nanoparticles sitting on a variety of surfaces. The work was both experimental and theoretical in nature. Using a custom designed experimental set-up we were able to probe the interaction of light with individual nanoparticles. We were also able to predict the interaction of light with gold nanoparticles sitting on graphene substrates. The work presented lays the groundwork for more extensive investigation of surfaces enhanced by the addition of gold nanoparticles.

Relevância:

20.00% 20.00%

Publicador: